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Cost–benefit analysis for optimal DG 
placement in distribution systems by using 
elephant herding optimization algorithm
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Abstract 

Distributed generations (DGs) are small generating plants which are connected to consumers in distribution sys-
tems to improve the voltage profile, stability improvement, reduction in power losses and economic benefits. The 
above benefits can be achieved by optimal placement of DGs. In this paper, a novel nature-inspired algorithm called 
elephant herding optimization algorithm is used to determine the optimal distributed generation size. It has been 
developed based on herding behaviour of elephant groups in nature. The proposed algorithm is tested on IEEE 15-, 
33- and 69-bus test systems. The proposed algorithm with type III DG unit operating at 0.9 pf gives better results 
when compared with other methods in the literature.
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Introduction
Distributed generation concept was aroused when the 
electricity was introduced as a commercial alternative 
for the energy. In distribution systems, the power flow is 
unidirectional and has radial structure. As the demand 
is increasing day by day, it faces several problems. About 
70% losses are occurring at distribution level, while 30% 
losses are occurring at transmission level. Hence distri-
bution systems are main concern nowadays. The losses 
targeted at distribution level are about 7.5%. Generally 
power sources like distributed generations (DGs), capaci-
tor banks, etc. are used to reduce losses. Quite a lot of 
methods have been proposed in the literature for the 
placement of DGs.

To minimize line losses of power systems, it is crucially 
important to define the size and location of local genera-
tion to be placed. Proper location of DGs in power sys-
tems is important for obtaining their maximum potential 
benefits. The authors Zhang et  al. (2018), Acharya 
et  al. (2006) and Wang and Nehrir (2004) proposed an 

analytical expression to calculate the optimal size and an 
effective methodology to identify the corresponding opti-
mum location for DG placement for minimizing the total 
power losses in primary distribution systems.

The authors Kaur and Jain (2017) proposed the optimal 
placement of multiple dispersed generators using multi-
objective optimization. A new planning approach based 
on voltage stability index (VSI) together with improved 
loss minimization (LM) formulations was also presented 
in the literature (Kazmi and Shin 2017; Singh and Parida 
2016; Singh and Goswami 2009; Kayal and Chanda 2013; 
Aman et  al. 2012, 2013, 2014; Amanifar 2011; Hedayati 
et al. 2008).

The optimal placement and sizing of distributed gen-
erators for real power losses minimization in distribution 
systems over the past years were proposed with different 
algorithms called war optimization (Coelho et al. 2018), 
global criterion method (Bhattacharya et al. 2018), hybrid 
GMSA (Mohamed et  al. 2018), a multi-objective evolu-
tionary algorithm based on decomposition (MOEA/D) 
(Biswas et al. 2017), K-means clustering method (Penang-
sang et al. 2018), shuffled frog leaping algorithm (SFLA) 
(Suresh and Belwin Edward 2017), a combination of a 
fuzzy multi-objective approach and bacterial foraging 
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optimization (BFO) as a meta-heuristic algorithm is used 
to solve the simultaneous reconfiguration and optimal 
sizing of DGs and shunt capacitors in a distribution sys-
tem (Mohammadi et al. 2017), a multi-objective genetic 
algorithm (Tarôco et  al. 2016), grey wolf optimizer 
(GWO) for multiple DG allocation (i.e. siting and sizing) 
in the distribution system (Sultana et  al. 2016), shuffled 
bat algorithm (Yammani et  al. 2016a), hybrid optimiza-
tion algorithm (Yammani et  al. 2016b), flower pollina-
tion algorithm (Sudabattula and Kowsalya 2016), hybrid 
big brunch big crunch algorithm (Saha and George Fer-
nandez 2016), sensitivity analysis technique (Gopiya 
Naik et  al. 2013), a modified teaching–learning-based 
optimization (MTLBO) algorithm (Martín García and 
Gil Mena 2013), harmony search algorithm (HSA) (Rao 
et  al. 2013), combined genetic algorithm (GA)/particle 
swarm optimization (PSO) (Moradi and Abedini 2012), 
improved honey bee mating optimization (HBMO) algo-
rithm (Niknam et al. 2011), multi-objective index-based 
approach (El-Zonkoly 2011), particle swarm optimization 
(PSO) (Táutiva et al. 2009; Kansal et al. 2013), a genetic 
algorithm (Masoum et  al. 2004) capacitor placement, 
multi-objective particle swarm optimization (MOPSO) 
probability-based solar power DG into the distribution 
system (Mahesh et al. 2017a, b), state-of-the-art models 
and methods applied to the ODGP problem (Georgilakis 
and Hatziargyriou 2013; Abdulwahhab Abdulrazzaq et al. 
2016; Warid et al. 2017) and a binary particle swarm opti-
mization (BPSO) algorithm (Moshtagh et al. 2010).

Several performance evaluation indices such as active 
and reactive power loss indices, voltage deviation index, 
reliability index and shift factor indices are used to 
develop a novel multi-objective function (MOF). A novel 
MOF has been solved to find optimal sizing and place-
ment of DGs using genetic algorithm, and particle swarm 
optimization technique was proposed in Bohre et  al. 
(2016). Optimal allocation and operating point of DG 
units in radial distribution network considering load pat-
tern had done in Sultana et  al. (2017) and Hadavi et  al. 
(2017). The authors Kalambe and Agnihotri (2014), Viral 
and Khatod (2012) and Li et al. (2018) give a bibliographi-
cal survey, general background and comparative analysis 
of three most commonly used techniques: (i) capacitor 
placement, (ii) feeder reconfiguration and (iii) DG alloca-
tion for loss minimization in distribution network.

Optimal and simultaneous siting and sizing of distrib-
uted generators and capacitor banks in distribution sys-
tems have attracted a lot of attention from distribution 
companies (Pereira et al. 2016). Techno-economic analysis 
is important in DG placement. Some of the papers (Tan-
war and Khatod 2016, 2017; Muttaqi et al. 2016; Asadi et al. 
2014; Mousavi and Mohammadi 2011; Payyala and Green 
2006) address the issue of DG planning and has proposed 

different techniques for optimizing the DG size and loca-
tion to minimize the overall investment and operational 
cost of the system. The installation of distributed genera-
tion power plants is common due to advantages such as 
system capacity release, voltage support and reduced 
energy losses in power networks (Dorahaki 2016). The 
authors Ameli et al. (2015) propose a novel comprehensive 
economic method for planning DG units which considers 
both the distribution company’s (DisCo) and the DG own-
er’s (DGO) profits simultaneously. The authors Kansal et al. 
(2017) present an profit/worth analysis approach for DG 
placement.

To the best of authors’ knowledge, elephant herding opti-
mization has not been proposed to optimal DG size with 
economic analysis in the literature.

Problem formulation
In the distribution system, more losses are there due to low 
voltage compared to transmission system. Copper losses 
are predominant in distribution system and this can be cal-
culated as follows

where Ii is current, Ri is resistance and n is number of 
buses. Objective taken in this paper is real power loss 
minimization. The voltage constraint is between the lim-
its 0.9 to 1.05. The upper and lower limits of DG are 60 to 
3000, where the limits are in kW, kVAR and kVA for type 
I, II and III DG, respectively.

Power loss reduction method
DG locations are obtained based on the power losses and 
their loss reductions in the system (Dinakara Prasad Reddy 
et al. 2018). Artificial intelligence technique is not involved 
in this method. The loss reductions at all the buses are 
calculated by compensating the total reactive power at 
each bus. The obtained loss reduction values are normal-
ized into the range [0, 1] for simplification, and minimum 
and maximum loss reductions are noted (Dinakara Prasad 
Reddy et al. 2018).

Real power loss in the kth line is given by [I2k ] × [Rk ] and 
can also be expressed as follows

Similarly reactive power loss in the kth line is given by 
[I2k ] × [Xk ] and can also be expressed as follows

(1)Ploss =

n−1
∑

i

I2i Ri

(2)PL(j) =
(P2(j)+ Q2(j))× Rk

V (j)2

(3)QL(j) =
(P2(j)+ Q2(j))× Xk

V (j)2
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where Ik is the current flowing through kth line. V[j] is 
the voltage at the bus ‘j’. P[j] = net active power supplied 
beyond the bus ‘j’. Q[j] = net reactive power supplied 
beyond the bus ‘j’. Rk and Xk are the resistance and reac-
tance of the kth line.

After finding the real and reactive power losses for all 
the buses, the loss reduction factors can be calculated 
using the following equation.

where b is the number of the bus. LR(b) is the loss reduc-
tion at bus b. LR(min) and LR(max) are the minimum and 
maximum loss reduction values. Power loss index (PLI) 
represent the loss reduction of that particular bus with 
respect to the maximum and minimum loss reductions in 
the system so that when the DGs are placed on the buses 
with high power loss index, maximum loss reduction can 
be expected.

Optimal locations for 15‑bus system
The proposed PLR method is applied to IEEE 15-bus sys-
tem. Optimal locations are identified based on the PLI 
values (Table 1).

First best location for 15-bus system is 15.

Optimal locations for 33‑bus system
The proposed PLR method is applied to 33-bus system. 
Optimal locations are identified based on the PLI values 
(Table 2).

Best location for 33-bus system is 30.

Optimal locations for 69‑bus system
The proposed PLR method is applied to 69-bus system. 
Optimal locations are identified based on the PLI values 
(Table 3).

First best location for 69-bus system is 61.

(4)PLI(b) =
LR(b)− LR(min)

LR(max)− LR(min)
Elephant herding optimization
Herding behaviour of elephants
African and Asian elephants are two of traditionally rec-
ognized species of the one of the largest mammals on 
earth. Multi-purpose usage of the long trunk of elephant 
like breathing, sucking water and fetching objects had the 
most significant feature. Elephants are social animals where 
females and calves live together as a herd. Different clan 
elephants are present in the group where the oldest leads 
them. A clan consists of one or more females with their 
kids. Females live in groups, and males live separately; they 
leave the family group after growing group. Through low-
frequency vibrations, the male elephants maintain contact 
with female elephants in the clan. In this paper, for the for-
mation of general-purpose global optimization method, 
two operators are derived from the herding behaviour of 
the elephants (Wang et al. 2015).

Elephant herding optimization
Three common rules are formed from the herding behav-
iour of the elephants to solve all types of global optimiza-
tion problems.

1.	 The elephant population is composed of some clans 
where each of the clan has fixed number of elephants.

Table 1  PLI values for 15-bus system

PLI values Bus number

1.0000 15

0.9865 11

0.9602 4

0.8353 7

0.8000 6

0.4611 12

0.4119 14

0.3266 8

0.3205 3

Table 2  PLI values for first ten elements of 33-bus system

PLI values Bus number

1.0000 30

0.2176 32

0.1531 31

0.1371 29

0.1317 14

0.1283 8

0.1195 7

Table 3  PLI values for first ten elements of 69-bus system

PLI values Bus number

1.0000 61

0.2669 64

0.1018 59

0.0736 65

0.0570 21

0.0547 12

0.0494 11
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2.	 In each generation, a certain number of male ele-
phants live unaccompanied leaving their family 
group or herd.

3.	 A matriarch acts as the leader for elephants living in 
a clan.

Clan updating operator
As the elephants live together under the leadership of 
the matriarch, the next position of each of the elephant 
is dependent on the matriarch of the clan. In clan for ele-
phant j, it is given as

where for elephant j in clan ci, xnew,ci,j and xci,j are newly 
updated and old positions, respectively. The influence of 
the matriarch in xci,j is taken on a scale factor α ∈ [0, 1] . 
The fittest elephant in the clan is xbest,ci . Uniform distri-
bution is used in this algorithm and r ∈ [0, 1] . The equa-
tion for updating the fittest elephant matriarch is given 
below

The factor that influences the xcentre,ci on xnew,ci,j is 
β ∈ [0, 1] . From the information collected from all the 
elephants in the clan ci, the new member xnew,ci,j is gener-
ated in the clan. For the dth dimension having xcentre,ci as 
the centre of the clan, it is calculated using

The dth dimension has the limits 1 ≤ d ≤ D , where D 
is its total dimension. The number of elephants in the 
clan is given by nci . dth elephant individual is given by 
∑nci

j=1 xci,j,d . The centre of clan xcentre,ci,d is calculated 
from the above equation. The clan updating operator can 
be formulated as shown in Algorithm 1.

Algorithm 1: Pseudo code of clan updating operator
1 foreach ci=1 to nclan (for all clans in elephant population) do
2 foreach j=1 to nci (for all elephants in clan ) do
3 update eqautionxci,j and generate xnew,ci,j

4 if xci,j = xbest,ci then
5 Update xci,j and generate xnew,ci,j by Eq.(6)
6 end
7 end
8 end

Separating operator
After reaching puberty, the male elephants will leave their 
family group and live solitarily. While solving optimiza-
tion problems, a separation operator can be modelled for 
this separating process. It is assumed that the elephant 

(5)xnew,ci,j = xci,j + α × (xbest,ci − xci,j)× r

(6)xnew,ci,j = β × xcentre,ci

(7)xcentre,ci,d =
1

n
×

nci
∑

j=1

xci,j,d

individuals with least fitness will implement the separat-
ing operator for further improvement in search ability of 
EHO algorithm and is calculated as

where the upper and lower bound positions of elephants 
are xmax and xmin , respectively. The worst elephant indi-
vidual of clan ci is given by xworst,ci . The uniform distri-
bution is in the range [0, 1] and stochastic distribution 
which is given by rand ∈ [0, 1] . The separating operator 
can be formed as shown in Algorithm 2.

Algorithm 2: Pseudo code of separating operator
1 foreach ci=1 to nclan (for all clans in elephant population) do
2 Replace the worst elephant in clan ci by Eq.(8).
3 end

EHO method is developed and updated based on the 
description of clan updating operator and its mainframe 
is shown in Algorithm 3.

Algorithm 3: Pseudo code of EHO algorithm
1 Initialization. Set generation counter t=1 ; initialize the population;

the maximum generation maxgen.
2 while t < maxgen do
3 Sort all the elephants according to their fitness.
4 Implement clan updating operator by algorithm 1.
5 Implement separating operator as shown in algorithm 2.
6 Evaluate population by the newly updated positions.
7 t=t+1.
8 end

Results and discussion
EHO algorithm for the application of DG planning 
problem to obtain DG size and economic analysis 
is presented in this section. IEEE 15-, 33- and 69-bus 
test systems are evaluated using Matlab. The param-
eters using in EHO algorithm are α = 0.5 , β = 0.1 , 
popsize = 50 , Maxgen = 60.

Techno‑economic analysis
The real and reactive power loss, minimum voltage 
level and the cost of energy loss as well as cost of power 
obtained from DGs have been provided for 15-, 33- and 
69-bus test systems at unity and 0.9 pf lag with com-
parisons. The cost of energy losses and cost component 
of DG power has been calculated based on the math-
ematical model represented as

Cost of energy losses (CL)
The annual cost of energy loss is given by (Murthy and 
Kumar 2013; Suresh and Belwin 2018)

(8)xworst,ci = xmin + (xmax − xmin + 1)× rand
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where TPL: total real power losses, Kp: annual demand 
cost of power loss ($/kW), Ke: annual cost of energy loss 
($/kW h) and Lsf: loss factor.

Loss factor is expressed in terms of load factor (Lf ) as 
below

The values taken for the coefficients in the loss factor 
calculation are: k = 0.2 , Lf = 0.47 , Kp = 57.6923 $/kW , 
Ke = 0.00961538 $/kWh.

Cost component of DG for real and reactive power

Cost coefficients are taken as: a = 0 , b = 20 , c = 0.25.

(9)CL = (TPL) ∗ (Kp+ Ke ∗ Lsf ∗ 8760) $

(10)Lsf = k ∗ Lf+ (1− k) ∗ Lf2

(11)C(Pdg) = a ∗ Pdg2 + b ∗ Pdg + c $/MWh

Cost of reactive power supplied by DG is calculated 
based on maximum complex power supplied by DG as

Pgmax = 1.1 ∗ pg , the power factor, has been taken 1 at 
unity power factor and 0.9(lag) at lagging power factor to 
carry out the analysis. k = 0.05− 0.1 . In this paper, the 
value of factor k is taken as 0.1.

IEEE 15‑bus system
The single line diagram of IEEE 15-bus distribution sys-
tem (Baran and Wu 1989) is shown in Fig. 1.

For IEEE 15-bus system without installation of DG, 
the real and reactive power losses are 61.7933 kW and 
57.2969 kVAR, respectively. With the installation of DG 
at unity pf real, reactive power losses are 42.24 kW and 
39.99 kVAR, respectively. With DG installation operat-
ing at 0.9 pf lag, the real and reactive power losses are 
28.05 kW and 22.94 kVAR, respectively. Comparison 
of results is shown in Table  4. The optimal location for 
15-bus test system is 15. The minimum voltage is more 
in case of type III DG operating at 0.9 pf. The losses are 
also lower with DG type III operating at 0.9 pf lag when 
compared to DG operating at upf. This is because both 
real and reactive powers are supplied by the DG at lag-
ging pf. Reactive power is not supplied by type III DG 
when operating at unity pf. Hence losses are higher when 
compared to DG operating at 0.9 pf lagging. The cost of 
energy losses, cost of PDG and cost of QDG are shown 
in Table  4. From the table, the cost of energy losses is 
reduced from 4970.3 $ to 2256 $ when DG is operating 
at 0.9 pf lag and it is reduced to 3397 $ when operat-
ing at unity pf. Cost of energy losses are less when DG 
is operating at 0.9 pf. When compared with the method 

(12)

C(Qdg) =

[

Cost(Sg max)− Cost(

√

Sg max2 − Qg2)

]

∗ k

(13)Sg max =
Pg max

cosφ

Fig. 1  Single line diagram of 15-bus system

Table 4  Results for 15-bus system

Without DG With DG at 0.9 pf (Dinakara 
Prasad Reddy et al. 2017)

Proposed 
method at 0.9 pf

With DG at UPF (Dinakara 
Prasad Reddy et al. 2017)

Proposed 
method 
at upf

DG location _ 6 15 6 15

DG size (kVA) _ 907.785 910.5 675.248 681.1

TLP (kW) 61.7933 33.385 28.05 45.8035 42.24

TLR (kVAR) 57.2969 29.89 22.94 41.88 39.99

Vmin (p.u.) 0.9445 0.959 0.971 0.9527 0.9596

Cost of energy losses ($) 4970.3 2685.31 2256 3684.18 3397

Cost of PDG ($/MW h) _ 16.5404 16.598 13.754 13.87

Cost of QDG ($/MVAR h) _ 1.8656 1.872 _
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(Dinakara Prasad Reddy et al. 2017), the proposed power 
loss reduction combined with EHO algorithms gives bet-
ter results.

Results for 33‑bus distribution system
The single line diagram of IEEE 33-bus distribution sys-
tem (Baran and Wu 1989) is shown in Fig. 2.

For 33-bus system without installation of DG, the real 
and reactive power losses are 211 kW and 143 kVAR, 
respectively. The real and reactive power from the 

substation is 3926 kW and 2443 kVAR. With installation 
of DG at unity pf, the real and reactive power losses are 
125 kW and 89.3 kVAR, respectively. Also the real and 
reactive power from the substation is decreased to 2375 
kW and 2443 kVAR. With DG operating at 0.9 pf lag, 
the real and reactive power losses are 78.4 kW and 58.97 
kVAR, respectively. The real and reactive powers from 
the substation become 218 kW and 1593 kVAR. The cost 
of energy losses, cost of PDG and cost of QDG are also 
shown in Tables 5 and 6. From table, the cost of energy 

Fig. 2  Single line diagram of 33-bus system

Table 5  Results for 33-bus system with DG at upf

Without DG Method (Murthy 
and Kumar 2013)

Method in Dinakara Prasad 
Reddy et al. (2017)

Proposed method

DG location – 16 6 30

DG size (kW) – 1000 2590.2 1544.5

Total real power loss (TLP) (kW) 211 136.7533 111.0338 125.2

Total reactive power (TLR) loss (kVAR) 143 92.6599 81.6859 89.3

Vmin (p.u.) 0.904 0.9318 0.9424 0.9272

Cost of energy losses ($) 16982.6 11,007.9 8930.65 10,067.3

Cost of PDG ($/MW h) – 20.25 52.05 31.15

Table 6  Results for 33-bus system with DG at 0.9 pf

Method (Murthy and Kumar 2013) Method in Dinakara Prasad Reddy et al. 
(2017)

Proposed method

DG location 16 6 30

DG size (kVA) 1200 3073.5 1939.3

TLP (kW) 112.7864 70.8652 78.4

TLR (kVAR) 77.449 56.7703 58.97

Vmin (p.u.) 0.9378 0.9566 0.9386

Cost of energy losses ($) 9078.7686 5700.01 6308.8

Cost of PDG ($/MW h) 21.85 55.5 35.102

Cost of QDG ($/MVAR h) 2.1207 6.2 3.928
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losses is reduced from 16982.57 $ to 6308.8 $ when DG is 
operating at 0.9 pf lag and it reduced to 10067.3 $ when 
operating at unity pf. Cost of energy losses is less when 
DG is operating at 0.9 pf. When compared with Murthy 
and Kumar (2013), the proposed method gives better 
results.

Results for 69‑bus distribution system
The IEEE 69-bus distribution system with 12.66-kV base 
voltage (Baran and Wu 1989) is shown in Fig. 3.

Without DG installation, the real and reactive power 
losses are 225 kW and 102.1091 kVAR, respectively. With 

the installation of DG at unity pf, the real and reactive 
power losses are 83.2261 kW and 40.54 kVAR, respec-
tively. With DG operating at 0.9 pf lag, the real and reac-
tive power losses are 27.95 kW and 16.46 kVAR.

The losses obtained are lower when DG operating at 
lagging power factor when compared to unity power fac-
tor DG. This is due to reactive power available in lagging 
power factor DG. The cost of energy losses, cost of PDG 
and cost of QDG are also shown in Tables 5 and 6. From 
table the cost of energy losses is reduced from 18,101.7 
$ to 2249.4 $ when DG is operating at 0.9 pf lag and it 
reduced to 6693.8 $ when operating at unity pf. The cost 
of energy losses are less when DG is operating at 0.9 pf.

Fig. 3  Single line diagram of 69-bus system

Table 7  Results for 69-bus system with DG at upf

Without DG Method (Murthy 
and Kumar 2013)

Method in Dinakara Prasad 
Reddy et al. (2017)

Proposed method

DG location – 65 61 61

DG size (kW) – 1450 1872.7 1873.6

TLP (kW) 225 112.0217 83.22 83.23

TLR (kVAR) 102.1091 55.1172 40.57 40.54

Vmin (p.u.) 0.909253 0.9660621 0.9685 0.9683

Cost of energy losses ($) 18,101.7621 9017.2139 6694 6693.8

Cost of Pdg ($/MW h) – 29.25 37.7 37.73
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Table 8  Results for 69-bus system with DG at 0.9 pf

Method (Murthy and Kumar 2013) Method in Dinakara Prasad Reddy et al. 
(2017)

Proposed method

DG location 65 61 61

DG size (kVA) 1750 2217.3 2216.3

TLP (kW) 65.4502 27.9636 27.95

TLR (kVAR) 35.625 16.4979 16.46

Vmin (p.u.) 0.969302 0.9728 0.9724

Cost of energy losses ($) 5268.4297 2249.2 2249.4

Cost of PDG ($/MW h) 31.75 40.1 40.0916

Cost of QDG ($/MVAR h) 3.083 4.48 4.4824

Fig. 4  Convergence characteristics of 15-bus system

Fig. 5  Convergence characteristics of 33-bus system
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The results obtained are given in Tables 7 and 8. Better 
results are obtained while considering reactive power of 
DG when comparison with unity pf. Convergence char-
acteristics of EHO algorithm for IEEE test systems with 
upf and 0.9 pf are shown in Figs. 4, 5 and 6, respectively.

The voltage profile is also improved with DGs at lag-
ging power factor, and it is shown in Figs. 7, 8 and 9. The 
voltage profile obtained for the system with DG oper-
ating at 0.9 pf is better compared to the voltage profile 
obtained with DGs at unity power factor. The power loss 
comparison is shown in Fig. 10.

Conclusions
In this paper, a novel nature-inspired algorithm called 
elephant herding optimization is used to determine the 
optimal DG unit’s size. It has been developed based on 
herding behaviour of elephant groups in nature. The 
study is carried out on two types of DG that are DG 
operating at unity power factor and DG operating at 0.9 
power factor lag. The results have been obtained for real 
and reactive power losses, voltage profile, cost compo-
nent for real power and reactive power obtained from 

Fig. 6  Convergence characteristics of 69-bus system

Fig. 7  Voltage profile of 15-bus system
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Fig. 8  Voltage profile of 33-bus system

Fig. 9  Voltage profile of 69-bus system

Fig. 10  Power loss comparison
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DGs, and their sizes. We can conclude that there is much 
reduction in real, reactive power losses and improvement 
in voltage profile with DG at 0.9 pf lag due to its reac-
tive power supply to the system. Therefore, DG operating 
at lagging power factor and supplying reactive power to 
the system is giving better results than DG at unity power 
factor. From the results, it can be concluded that with the 
combination of power loss index method and EHO algo-
rithm is giving overall better results when compared with 
other algorithms.
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