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Abstract 

Wind potential estimation is generally evaluated using two-parameter (k, c) Weibull distribution. Root Mean Square 
Error (RMSE), Coefficient of Determination  (R2) and Relative Error (RE) are computed in order to comparatively ana-
lyse fourteen methods of determining Weibull parameters. They are the Graphical Method, the Standard Deviation 
Method, the Empirical Method of Justus, the Empirical Method of Lysen, the Energy Pattern Factor Method, the 
Maximum Likelihood Method, the Modified Maximum Likelihood Method, the Alternative Maximum Likelihood 
Method, the Least Square Method, the Weighted Least squares Method, the Curve Fitting Method, the Wind Vari-
ability Method, the Moroccan Method and the Median and Quartile Method. These methods have been applied on 
three different windy sites (slightly, moderately and very windy sites) with hourly wind data over a period of 10 years 
(2005–2014), measured at 10 m height. As a result, compared to the other methods, Energy Pattern Factor method 
is the more suitable method applicable to assess the Weibull parameters for all wind speeds. However, the values 
obtained from RMSE,  R2 and RE tests revealed that the WVM and MoroM methods are not suitable while all other 
methods are acceptable for the estimation of k and c. parameters. The determination of the wind power density and 
the gap between the predicted standard deviation by each method and the measured standard deviation for all the 
sites highlighted the relevance of EPFM method and the others methods. Moreover, this work reveals that the Weibull 
shape factor k decrease with height above ground level, while that of the scale factor c increase with height.
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Introduction
The world is more than ever turning forwards the devel-
opment of renewable energies in order to ensure sustain-
able development for all while fighting against global 
warming. Amongst most emerging renewable energies 
such as solar wind and hydropower, wind energy is cur-
rently the most widespread on earth with a total power 

availability estimated between 300,000 and 870,000 GW 
(Tester et  al., 2007). The wind power capacity installed 
in the world is estimated at 591 GW and 5,720  MW in 
Africa (Global Wind Report, 2020). Wind energy is used 
as a solution for electrification, irrigation and water 
pumping both in isolated rural areas and in urban areas 
(Ferrer-Martí et al., 2012; Firtina-Ertis et al., 2020; Gha-
semi, 2018; Leary et al., 2012; Mehrjerdi, 2020; Nsouan-
délé et  al., 2016; Peillón et  al., 2013; Saeed et  al., 2020). 
However, the use of wind energy depends on the avail-
ability of the resource which needs to be deeply assessed 
before designing/installing as well as and during the 
operation of the systems (Saeed et  al., 2020; Usta et  al., 
2018). Over time, the estimation of wind potential has 
become essential and necessary for any wind power 
operation. Several authors have reported it around the 
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world since the work of Justus et al. (Justus & Mikhail, 
1976; Justus et al., 1978). Therefore, several wind power 
density determination models have been developed such 
as the Rayleigh model, Normal, Log Normal, Truncated 
Normal, Logistic, Log Logistic, Generalised Extreme 
Value, Nakagami, Inverse Gaussian, Inverse Weibull and 
Weibull as presented in Table 1 (Akgül et al., 2016; Alavi 
et al., 2016; Jung & Schindler, 2017; Katinas et al., 2018; 
Masseran, 2018; Mohammadi et  al., 2017; Wang et  al., 
2016). Among them, Weibull distribution has been found 
as one of the widely appropriate and accepted approach 
to statistically assess wind behaviour and potential in any 
site (Akdağ & Dinler, 2009; Aristide et al., 2015; Chang, 
2011; Costa Rocha et  al., 2012; Justus & Mikhail, 1976; 
Kaoga et al., 2014; Kazet et al., 2013; Mohammadi et al., 
2016; Mohammadi et  al., 2017; Nsouandélé et  al., 2016; 
Ouahabi et  al., 2020; Tchinda et  al., 2000; Youm et  al., 
2005). Although the three-parameter Weibull distribu-
tion may give a more precise result when there is a high 
frequency of null winds speeds, the two-parameters 
Weibull distribution remains the most appropriate model 
and the most widely used in the wind industry sector 
provided the more accurate parameters are given (Justus 

& Mikhail, 1976; Kaoga et al., 2014; Kumar Pandey et al., 
2020; Ulrich et al., 2018; Wais, 2017; Zhu, 2020). This aim 
of this paper is to analyse the accuracy in the determi-
nation of the two-parameters Weibull function namely 
shape parameter k and scale parameter c. Several mod-
els for estimating these parameters (k; c) have been 
developed, studied and even compared with each other 
(Akdağ & Dinler, 2009; Akgül et al., 2016; Andrade et al., 
2014; Aukitino et  al., 2017; Chang, 2011; Costa Rocha 
et al., 2012; Katinas et al., 2018; Li et al., 2020; Moham-
madi et al., 2016; Mohammadi et al., 2017; Pobočíková & 
Sedliačková, 2012; Pobočíková et  al., 2018; Wang et  al., 
2016; Werapun et  al., 2015). Akdag et  al. demonstrated 
that his new power density method for calculating k and 
c parameters is more suitable than the maximum likeli-
hood method and graphical method using 3  years of 
data from sites in Turkey (Akdağ & Dinler, 2009). Oua-
habi et  al. (Ouahabi et  al., 2020) compared five differ-
ent methods such as EMJ, EML, MM, EPFM and GM to 
determine the most accurate method of analysing annual 
variations of wind energy using 3 years of data from sites 
in Morocco. They found out that all could be appropriate 
for evaluating the parameters of Weibull distribution, but 

Table 1 Some models used to characterize the distribution of wind speeds

Name Wind power density function

Rayleigh (Jung & Schindler, 2017; Katinas et al., 2018; Masseran, 2018; Moham-
madi et al., 2017; Wang et al., 2016)

f (x ,α) = x
α2
exp

[

− 1
2

(

x
α

)2
]

Normal (Jung & Schindler, 2017; Mohammadi et al., 2017; Wang et al., 2016) f (x ,α,µ) = 1

α
√
2π

exp
[

− 1
2

(

x−µ
α

)2
]

Log normal (Alavi et al., 2016; Jung & Schindler, 2017; Masseran, 2018; Moham-
madi et al., 2017; Wang et al., 2016) f (x ,α,µ) = 1

xα
√
2π

exp

[

− 1
2

(

ln (x)−µ
α

)2
]

Truncated normal (Jung & Schindler, 2017; Wang et al., 2016)
f (x ,α,µ) =

1

I(α,µ)α
√
2π

exp

[

−
1

2

(

x − µ

α

)2
]

where

I(α,µ) =
1

α
√
2π

∞
∫

0

exp

[

−
1

2

(

x − µ

α

)2
]

dx

Logistic (Jung & Schindler, 2017; Mohammadi et al., 2017) f (x ,α,µ) = 1

α

[

1+exp
(

x−µ
α

)]2 exp
(

x−µ
α

)

Log logistic (Alavi et al., 2016; Jung & Schindler, 2017; Mohammadi et al., 2017; 
Wang et al., 2016)

f (x ,α,µ) = 1

xα
[

1+exp
(

ln (x)−µ
α

)]2 exp
(

ln (x)−µ
α

)

Generalised extreme value (Alavi et al., 2016; Jung & Schindler, 2017; Mohammadi 
et al., 2017) f (x ,α, k,µ) = 1

α

[

1− k
α
(x − µ)

]1/ k−1
exp

{

−
[

1− k
α
(x − µ)

]1/ k
}

Nakagami (Alavi et al., 2016; Jung & Schindler, 2017; Mohammadi et al., 2017) f (x ,α, k) = 2kk

Ŵ(k)αk
x2k−1 exp

(

− k
α
x2
)

Inverse Gaussian (Jung & Schindler, 2017; Masseran, 2018; Mohammadi et al., 
2017) f (x ,α,µ) =

√

α

2πx3
exp

[

− 1
2
α
x

(

x−µ
µ

)2
]

Inverse Weibull (Akgül et al., 2016; Jung & Schindler, 2017) f (x ,α, k) = k
α

(

α
x

)k+1
exp

[

−
(

α
x

)k
]

Weibull (Alavi et al., 2016; Jung & Schindler, 2017; Katinas et al., 2018; Masseran, 
2018; Mohammadi et al., 2017; Wang et al., 2016)

f (x ,α, k) = k
α

(

x
α

)k−1
exp

[

−
(

x
α

)k
]
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the GM has shown weak capability, whereas the MM was 
found to provide the best assessment of wind potential. 
Along the same lines, Rocha et al. compared the perfor-
mance of seven numerical methods (GM, MLM, EPFM, 
MM, EMJ, MMLM, EEM) for estimating shape (k) and 
scale (c) parameters of the Weibull distribution on the 
basis of 21 months measured wind speed data, collected 
at different locations in Brazil (Costa Rocha et al., 2012). 
They analysed statistically the effectiveness of the selected 
methods. Their results indicated that the EEM is an effi-
cient method for estimating Weibull parameters. Like-
wise, Teyabeen et al. in their study on the comparison of 
seven numerical methods (GM, MM, EMJ, EML, EPFM, 
MLM, MMLM) in order to determine which is the most 
efficient in the evaluation of the parameters of Weibull 
distribution on the basis of the 1-year wind speed data, 
collected in Zuwara (Libya) (Teyabeen et  al., 2017). His 
results indicate that the MLM give the best performance 
followed by EMJ and EML while the GM shows poor 
performance (Teyabeen et al., 2017). In the study did by 
Werapun et al. in Alberta (Canada), these k and c param-
eters were determined using some methods EMJ, EPFM, 
MLM, MMLM and GM from 3  years data. Their study 
showed that EPFM is the one which best estimates these 
Weibull parameters because it presents the best percent-
age error of the power density and also the greatest value 
of  R2 (Werapun et al., 2015). It is also in this line that the 
work of Kidmo et  al. compared five (05) methods (GM, 
MLM, MMLM, EMJ, EPFM) to determine the parame-
ters k and c register (Kaoga et al., 2014). After analysing 
performance by statistical methods using 28  years data 
from one site in Cameroon, the EPFM emerges as the 
most suitable for estimating Weibull parameters (Kaoga 
et al., 2014). More recently, Kapen et al., while compar-
ing ten methods (EMJ, EML, MM, GM, MoroM, EPFM, 
MLM, MMLM, EEM, AMLM) with 7  years data in a 
particular site in Cameroon, established the fact that the 
EEM is the most accurate one (Tiam Kapen et al., 2020).

The Table  2 summarises the review in determining k 
and c parameters by presenting the methods, the sources 
of data, the sites and the statistical tests used. The best 
method obtained in each study is also presented. It 
appears from these studies that one method of deter-
mining Weibull parameters may be better than the other 
depending on the site and the data. This leaves the ques-
tion of the link between the data of a site and the method 
of determining the Weibull parameters to be used opened 
to have a better estimation of the wind potential.

This article carries out an analysis of the influence of 
Weibull parameters determination methods on a more 
accurate estimation of the wind potential of any site. 
More precisely, this study investigates how a site’s wind 
speed level affects the choice of the Weibull parameters 

estimation methods. Firstly, it presents a review of the 
methods for determining (k;c) Weibull parameters. Four-
teen methods are then assessed using statistical tests 
such as RMSE,  R2 and RE from three different windy sites 
(slightly, moderately and very windy) with hourly wind 
data over a period of 10 years (2005–2014), measured at 
10 m height. The asymmetry of the distribution of each 
method is highlighted using kurtosis and skewness coef-
ficients. In the same line, the predicted Wind Power Den-
sity (WPD) of each method and the measured WPD are 
compared, as well as the predicted and measured mean 
wind speed and their Wind Power Density has been 
evaluated.

Review of methods for determining Weibull 
parameters
In literature, different methods are presented to estimate the 
Weibull parameters. In this study, fourteen of them are used: 
Graphical Method (GP), Empirical Method of Justus (EMJ), 
Empirical Method of Lysen (EML), Energy Pattern Factor 
Method (EPFM), Maximum Likelihood Method (ML) and 
Modified Maximum Likelihood Method (MMLM), Alterna-
tive Maximum Likelihood Method (AMLM), Least Square 
Method (LSM), Weighted Least Square Method (WLSM), 
Curve Fitting Method (CFM), Wind Variability Method 
(WVM), Moroccan Method (MoroM) and Median and 
Quartile Method (MQM). The later are describe briefly as 
follows.

Graphical method (GM)
GM is derived using the cumulative probability density func-
tion defined by Eq. (31). The following expression (Eq. 1) is 
obtained by linearizing the cited Eq.  (31) (Akdağ & Dinler, 
2009; Aristide et al., 2015; Chang, 2011; Costa Rocha et al., 
2012; Mohammadi et al., 2016; Ouahabi et al., 2020).

Thus y = ln [− ln [1− F(v)]] , a = k , b = −k ln (c).
The last equation takes the form of (2). Its parameters 

will be determined graphically. Thus,

Moment method (MM) or standard deviation method
MM is applied on the basis of the mean and standard 
deviation of the Weibull distribution (Akdağ & Dinler, 
2009; Arslan et al., 2014; Chang, 2011; Costa Rocha et al., 
2012; Ouahabi et  al., 2020; Teyabeen et  al., 2017; Wang 
et al., 2016).

(1)ln [− ln [1− F(v)]] = k ln (vi)− k ln (c)

(2)k = a et c = e−b/ k
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The parameter k is obtained by solving Eq.  (5), 
obtained by relating the standard deviation to the mean 
velocity, by using the numerical method.

The c parameter is determined from k according to 
Eq. (6):

(3)vm = cŴ

(

1+
1

k

)

(4)σ = c

√

Ŵ

(

1+
2

k

)

− Ŵ2

(

1+
1

k

)

(5)
(

σ

vm

)2

=
Ŵ

(

1+ 2
k

)

Ŵ2
(

1+ 1
k

) − 1

Empirical method of justus (EMJ)
This method proposed by Justus et al., uses the mean wind 
speed and the standard deviation for estimating parameter 
k (Chang, 2011; Costa Rocha et  al., 2012; Khchine et  al., 
2019; Li et  al., 2020; Mohammadi et  al., 2016; Ouahabi 
et  al., 2020; Teyabeen et  al., 2017; Werapun et  al., 2015), 
through the following expression (Eq.  7). c is given by 
Eq. (6).

(6)c =
vm

Ŵ

(

1+ 1
k

)

(7)k =
(

σ

vm

)−1,086

Table 2 Review of the methods for estimating Weibull parameters

Authors (date) Methods used Data sources Period Statistical tests Best methods 
found

Site(s)

Tiam Kapen et al. 
(2020)

EMJ, EML, MM, GM, 
MoroM, EPFM, MLM, 
MMLM, EEM, AMLM

Local station data 7 years RMSE, X2,  R2 MLM Bafoussam (Cameroon)

Ouahabi et al. (2020) EMJ, EML, MM, EPFM, 
GM

Local station data 3 years R2, RMSE, X2 MM Tetouan (Morocco)

Sumair et al., (2020) WEIM, MLM, MML Satellite data 3 years WEE, RMSE,  R2 WEI Sixty sites (Pakistan)

Kengne Signe et al., 
(2019)

GM, EMJ, EPFM, MLM, 
MM, MMLM, EEM

Local station data 21 months RMSE, X2,  R2 EPFM, MM Douala (Cameroon)

Chaurasiya et al., 
(2018)

GM, MM, PDM, EMJ, 
EML, MLM, MMLM, 
LSM, AMLM

Local station data 1 month RMSE,  R2, MAPE, X2 MMLM, MLM Kayathar

Teyabeen et al., 
(2017)

GM, MM, EMJ, EML, 
EPFM, MLM, MMLM

Local station data 1 year MAPE, MABE, RMSE, 
 R2

EMJ, EML Zuwara (Libya)

Aukitino et al., (2017) MQM, MM, LSM, 
MLM, MMLM, EPFM, 
EEM

SODAR 1 year R2, COE, RMSE, MAE, 
MAPE

MM Tarawa & Abaiang

Mohammadi et al., 
(2016)

GM, EML, EMJ, EPFM, 
MLM, MMLM

Local station data 3 years RPE, MAPE, MABE, 
RMSE, RRMSE, R, IA

EMJ, EML, EPFM, 
MLM

Alberta (Canada)

Werapun et al., (2015) EMJ, EPFM, MLM, 
MMLM, GM

Local station data 3 years Kolmogorov-Smi-
norv test,  R2, RMSE, 
PEWPD

EPFM Phangan Island (Thai-
land)

Kaoga et al., (2014) GM, MLM, MMLM, 
EMJ, EPFM

Satellite data 28 years RMSE,  R2 EPFM Kousseri (Cameroon)

Costa Rocha et al., 
(2012)

GM, MLM, EPFM, MM, 
EMJ, MMLM, EEM

Local station data 21 months RMSE, X2,  R2 EEM locations in Brazil

Akdağ & Dinler, 
(2009)

NPDM, MLM, GM Local station data 120 months
120 months
48 months
24 months

RMSE,  R2 NPDM Maden, Gökçeada, 
Çanakkale and Boz-
caada (Turkey)

This Work GM, EMJ, EML, EPFM, 
MLM, MMLM, AMLM, 
LSM, WLSM, CFM, 
WVM, MoroM, MQM

Satellite data 10 years RMSE,  R2, RE EPFM DR Congo
Botswana
Mauritania
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Empirical method of Lysen (EML)
In a similar manner to EMJ, k and c are estimated through 
mean wind speed and standard deviation using EML. The 
estimation of the shape factor k is given by Eq. (8) above, 
and c by Eq.  (9) (Mohammadi et  al., Jan. 2016; Ouahabi 
et al., 2020; Teyabeen et al., 2017).

Energy pattern factor method (EPFM)
EPFM is related to the average data of wind speed. The 
parameter c is calculated using Eq. (6) and the parameter k 
is given in Eqs. (10) and (11) above (Akdağ & Dinler, 2009; 
Aukitino et al., 2017; Chang, 2011; Costa Rocha et al., 2012; 
Khchine et  al., 2019; Li et  al., 2020; Mohammadi et  al., 
2016; Ouahabi et al., 2020; Werapun et al., 2015):

Maximum likelihood method
This method is solved by numerical iterations to determine 
the parameters of the Weibull distribution (Akdağ & Din-
ler, 2009; Akgül et  al., 2016; Arslan et  al., 2014; Aukitino 
et al., 2017; Chang, 2011; Costa Rocha et al., 2012; Katinas 
et al., 2018; Li et al., 2020; Mohammadi et al., 2016; Wang 
et al., 2016; Werapun et al., 2015).

(8)k =
(

σ

vm

)−1,086

(9)c = vm

(

0, 568+
0, 433

k

)−1/ k

(10)Epf =

1
n

n
∑

i=1

v3i

(

1
n

n
∑

i=1

vi

)3

(11)k = 1+
3, 69
(

Epf
)2

(12)k =









m
�

i=1

vki ln (vi)

m
�

i=1

vki

−

m
�

i=1

ln (vi)

m









−1

(13)c =

[

1

m

m
∑

i=1

vki

]1/ k

Modified maximum likelihood method (MMLM)
The Modified Maximum Likelihood method is an itera-
tive method as well. Its specificity resides in taking into 
consideration both the wind frequency and the prob-
ability of an uncalm wind (Akgül et  al., 2016; Aukitino 
et al., 2017; Chang, 2011; Costa Rocha et al., 2012; Kati-
nas et al., 2018; Mohammadi et al., 2016; Werapun et al., 
2015).

Alternative maximum likelihood method (AMLM)
A simple procedure developed due to iterative character-
istics of maximum likelihood method (Chaurasiya et al., 
2018).

Least square method (LSM)
The parameters (a and b) of Eq.  (18), defined by the 
graphical method, can be estimated by the LSM method 
as well. It is based on minimizing the Q(a,b) func-
tion when determining the regression parameters 
(Pobočíková & Sedliačková, 2012; Pobočíková et  al., 
2018).

The parameter k is therefore given by the Eq. (19):

(14)k =











b
�

i=1

vki ln (vi)f (vi)

b
�

i=1

vki f (vi)

−

b
�

i=1

ln (vi)f (vi)

f (v ≥ 0)











−1

(15)c =

[

1

f (v ≥ 0)

b
∑

i=1

vki f (vi)

]1/ k

(16)k =
π
√
6











n(n− 1)

n

�

n
�

i=1

ln
�

v2
�

�

−
�

n
�

i=1

ln (v)

�2











(17)c =

[

1

n

n
∑

i=1

vk

]1/ k

(18)Q(a, b) =
n

∑

i=1

(

yi − a− b ln (vi)
)2
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With the cumulative frequency function given by 
F(v) = i

n+1.
Where i is the ith small value of: v1, v2, v3, . . . , vn

i = 1, 2, 3, . . . , n

Weighted least squares method (WLSM)
Similar to the LSM method, the regression parameters 
can be determined by minimizing Q(a,b) from Eq.  (21) 
(Pobočíková & Sedliačková, 2012; Pobočíková et  al., 
2018).

The evaluation of weight factors wi has been proposed 
by Bergman (1986) (Pobočíková & Sedliačková, 2012):

where F(v) = i
n+1 ;  i = 1, 2, 3, . . . , n       and 

v1, v2, v3, . . . , vn

Curve fitting method
With this method, the scale parameter is estimated by 
Eq.  (6) and the shape parameter is determined by the 
expression below (Li et al., 2020):

(19)k =
n

n
∑

i=1

ln (vi)× ln (− ln (1− F(v)))−
n
∑

i=1

ln (vi)×
n
∑

i=1

ln (− ln (1− F(v)))

n

n
∑

i=1

(ln (vi))
2 −

(

n
∑

i=1

ln (vi)

)2

(20)

c = exp









k
n
�

i=1

ln (v)−
n
�

i=1

ln (− ln (1− F(v)))

nk









(21)Q(a, b) =
n

∑

i=1

wi

(

yi − a− b ln (vi)
)2

(22)wi = [(1− F(vi)) ln (1− F(vi))]
2

(23)k =

n
∑

i=1

wi

n
∑

i=1

wi ln (vi)× ln [− ln (1− F(vi))]−
n
∑

i=1

wi ln (vi)×
n
∑

i=1

wi ln [− ln (1− F(vi))]

n
∑

i=1

wi

n
∑

i=1

wi(ln (v))
2 −

(

n
∑

i=1

wi ln (vi)

)2

(24)

c = exp









k
n
�

i=1

wi ln (vi)−
n
�

i=1

wi ln (− ln (1− F(vi)))

k
n
�

i=1

wi









Wind variability method
Here, c is determined using Eq.  (6). k is dependent on 
to variability of the wind speed of the site. It given by 
Khchine et al. (2019):

Moroccan method
Mabchour used this method for the evaluation of the 
wind potential in Morocco (Khchine et  al., 2019). c is 
given by Eq. (6) and k is determined by:

Median and quartiles method
If the median of wind speed is vm and quartiles v0.25 and 

v0.75 are such that P(v ≤ v0.25) = 0.25 P(v ≤ v0.75) = 0.75 
then the shape parameter k and the scale factor A can be 
estimated using the relations (Aukitino et al., 2017).

(25)k =
[

0.9874

σ/vm

]1.0983

(26)k =







1.05× v1/ 2 if v �3
0.94 × v1/ 2 if 3 � v � 4
0.83× v1/ 2 if v � 4

(27)k = 1+ [0.483(vm − 2)]0.51

(28)k =
ln
[

ln (0.25)
ln (0.75)

]

ln
[

v0.75
v0.25

]

(29)c =
vm

ln
(

21/ k
)
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Methodology and wind data used
Challenges of precision in the distribution of Weibull 
function
The most widely used model to characterize the distribu-
tion of wind speeds is the Weibull probability distribu-
tion. The Weibull distribution function is an exponential 
function with two parameters: a shape parameter k (unit-
less) and a scale parameter c (m/s) (Justus et  al., 1978). 
The c parameter provides information on the mean wind 
speeds characteristic of the site, while the k parameter 
indicates the sharpness of the distribution. The Weibull 
distribution is expressed mathematically by its probabil-
ity density function f(v) given by:

f(v) represents the frequency of occurrence of wind 
speeds. Similarly, the corresponding Weibull cumulative 
distribution function F(v) is written as:

The wind power density on the basis of Weibull prob-
ability density function is estimated using the following 
equation (Mohammadi et al., 2016):

In order to adequately describe a distribution of data, 
it is essential to report the mean and standard devia-
tions. the coefficient of the skewness and kurtosis 
have been also determined to take the asymmetry into 
consideration.

Skewness
Skewness gives the direction of the asymmetry. When 
the skewness is positive, the distribution is in the right 
(right asymmetry). On the other hand, when the skew-
ness is negative, there is a left asymmetry. The distribu-
tion is symmetrical when the skewness is equal to zero 
(Mohammadi et  al., 2016; Saidi et  al., 2017). The skew-
ness is calculated by the expression:

where x is the sample power distribution function, i is the 
sample index, n is the number of samples and xm is sam-
ple mean.

(30)f (v) =
(

k

c

)

(v

c

)k−1
exp

(

−
(v

c

)k
)

(31)F(v) =
∫

f (v)dv = 1− exp

(

−
(v

c

)k
)

(32)P =
1

2
ρ

∫ ∞

0

v3f (v)dv =
1

2
ρc3Ŵ

(

1+
3

k

)

(33)skewness =
1

n

n
∑

i=1

(xi − xm)
3

Kurtosis parameter
It is a statistical parameter, defined using the following 
expression (Mohammadi et al., 2016; Saidi et al., 2017):

where x is the sample power distribution function, i is the 
sample index, n is the number of samples and xm is sam-
ple mean. This normalized fourth moment is designed to 
reflect the “peakedness” of the distribution.

Performance analysis of the methods for determining k 
and c parameters
Several statistical indicators are used to measure the per-
formance of the estimating methods in a bid to find the 
best method of estimating the Weibull’s k and c param-
eters. The most relevant indicators for wind data analysis 
consist of the root mean square error (RMSE), the coef-
ficient of determination  (R2), and the relative error (RE).

Root mean square error (RMSE)
The RMSE represents the accuracy of distribution by 
measuring the average mismatch between values of 
observed and estimated wind speed frequency. The 
RMSE ranges from 0 to infinity. The ideal value of RMSE 
is close to zero (Akdağ & Dinler, 2009; Akgül et al., 2016; 
Alavi et  al., 2016; Aukitino et  al., 2017; Chang, 2011; 
Costa Rocha et al., 2012; Jung & Schindler, 2017; Katinas 
et al., 2018; Khchine et al., 2019; Li et al., 2020; Moham-
madi et al., 2016; Mohammadi et al., 2017; Ouahabi et al., 
2020; Wang et al., 2016). It is given by:

Coefficient of determination R.2

The coefficient of determination  R2 ranges from 0 to 
1. The ideal value of  R2 is equal to 1 (Akdağ & Dinler, 
2009; Akgül et  al., 2016; Alavi et  al., 2016; Costa Rocha 
et al., 2012; Jung & Schindler, 2017; Katinas et al., 2018; 
Khchine et  al., 2019; Mohammadi et  al., 2017; Ouahabi 
et al., 2020; Wang et al., 2016).

(34)kurtosis =

1
n

n
∑

i=1

(xi − xm)
4

(

1
n

n
∑

i=1

(xi − xm)
2

)2

(35)RMSE =

√

√

√

√

1

n

n
∑

i=1

(

yi − zi
)2

(36)R2 = 1 −

n
∑

i=1

(

yi − zi
)2

n
∑

i=1

(

yi − ym
)2
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where zi, yi , ym are respectively the estimated and 
observed frequency of wind speed, and the mean value.

Relative error (RE)
The relative error is used to measure the error between 
two points, given as (Akdağ & Dinler, 2009; Katinas et al., 
2018):

where ŴPDW ,WPDi are the wind power density esti-
mated based on the Weibull distribution and are the 
wind power density estimated based on the observed 
data respectively.

Extrapolation of Weibull parameters
Justus et  al. (‘Global Wind Report, 2020; Leary et  al., 
2012; Tester et al., 2007) proposed a coherent methodol-
ogy for adjusting Weibull k and c (values known at one 
height) to another desired height if the wind distribution 
is desired at a height other than the anemometer level. 
The Weibull distribution values c10 and k10 determined at 
a height of 10 m above ground level (AGL)  (z10 = 10 m) 
are extrapolated to any desired height z using the rela-
tion below (Arslan et  al., 2014; Justus & Mikhail, 1976; 
Nsouandélé et al., 2016):

(37)RE =

∣

∣

∣

∣

∣

ŴPDw −WPDi

WPDi

∣

∣

∣

∣

∣

× 100

(38)cz = c10 ×
(

z

z10

)n

where n is the power law exponent given by:

(39)kz =
k10

1− 0.00881 ln (z/10)

(40)n = 0.37− 0.088 ln (c10)

Table 3 Coordinates of study sites

Site Site 1(slightly) Site 2 (moderate) Site 3 (very windy)

Latitude −4.215 −24.207 21.775

Longitude 22.500 21.270 −15.974

Altitude 507 1146 79

Country Democratic 
Republic of 
Congo

Botswana Mauritania

Table 4 Characteristics of wind data

Wind data Site 1 Site 2 Site 3

min 0.01 0.01 0.04

max 3.92 14.07 14.09

Mean 1.14539 3.96314 5.92471

Std 0.45676 1.75083 2.08871

Table 5 Evaluation of the performance of the 14 selected 
methods for the site of Site 1

Methods Weibull parameters Statistical indicators

K c RMSE R2

GM 2.66256161499 1.28749830353 0.41134565345 0.95265381643

EMJ 2.71396783456 1.28777461687 0.41447762148 0.95473804509

EML 2.71396783456 1.28782469571 0.41446949713 0.95473160107

EPFM 2.60211185660 1.28952772304 0.40727226124 0.98957815290

MM 2.70484156176 1.28792442074 0.41389026012 0.95436535670

MLM 2.63506684333 1.28613243640 0.40986128507 0.95152893063

MMLM 2.63506684333 1.28613243640 0.40986128508 0.95152893063

AMLM 2.70082586859 1.29157392921 0.41305284254 0.95373196912

LSM 2.68234951348 1.29297249228 0.41168841497 0.95281976751

WLSM 2.89997575853 1.27018173195 0.42883192453 0.96295486753

CFM 2.70687053969 1.28789120928 0.41402085453 0.95444891523

WVM 1.38750174580 1.25491880279 0.74936396632 0.44753812176

MoroM 1.16855711319 1.20902805426 0.90355036297 0.45405322041

MQM 3.40858067762 1.23600767097 0.46562752703 0.97405833713

Table 6 Evaluation of the performance of the 14 selected 
methods for the site of Site 2

Methods Weibull parameters Statistical indicators

K c RMSE R2

GM 2.48093692707 4.46684709967 0.11551038911 0.96256389078

EMJ 2.42833025660 4.46962091849 0.11452116793 0.96113169274

EML 2.42833025660 4.47066135923 0.11450773229 0.96109099903

EPFM 2.34876804012 4.47225957099 0.11304240782 0.99820879117

MM 2.41248786856 4.47020087108 0.11422626336 0.96063039621

MLM 2.37942818928 4.46812708524 0.11365254551 0.95956279594

MMLM 2.37942818928 4.46812708524 0.11365254551 0.95956279594

AMLM 2.49906971246 4.51054100074 0.11527180207 0.96066775755

LSM 2.48690910958 4.47209284141 0.11555011666 0.96244512117

WLSM 2.54990989620 4.40278409959 0.11760971613 0.96665716446

CFM 2.41893128138 4.46996806497 0.11434618393 0.96083889259

WVM 1.73355595343 4.44738180069 0.98529591798 0.47376110573

MoroM 1.57323659342 4.47072465800 0.92623407302 0.52500147481

MQM 2.82539291437 4.23525997301 0.12498770314 0.97546025262
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Description of wind data used
The study is carried out on three sites (site 1 slightly 
windy, site 2 moderately windy, and site 3 very windy). 
Geographical coordinates of the study sites are presented 
in Table  3. The data used are collected over a 10  year-
period (2005–2014) at 1-hour intervals (Katinas et  al., 
2017). The characterisation of data is given in Table 4.

Results and discussion
The Weibull parameters k and c were determined using 
fourteen methods.

Performance evaluation of the different methods 
for determining k and c Weibull parameters
The performance of the fourteen selected methods on 
a daily basis in terms of RMSE and  R2, respectively has 
been evaluated for three types of sites (site 1 slightly 
windy, site 2 moderately windy, and site 3 very windy). 
It is important to note that each indicator offers different 
suitable understandings to compare the methods. Con-
sequently, the combination of these statistical indicators 
provides a possibility to compare the fourteen methods 
for determining k and c.

The following tables (Tables  5, 6 and 7) present the 
results of the performance evaluation of the differ-
ent methods for determining k and c, for each of the 
three sites by statistical tests (RSME,  R2). All methods 
indicated a mean value of the parameter c of 1.2  m/s, 
4.4 m/s, and 6.6 m/s, respectively for the slightly windy, 
moderately windy, and very windy site (Tables 5, 6 and 
7). On the other hand, twelve methods out of fourteen 
studied have a mean value of the parameter k equal to 

or greater than 2. As Tables 5, 6 and 7 shows, the WVM 
and MoroM methods have values of k less than 2.

Furthermore, for the slightly windy site, k is 1.3875 
for WVM and 1.1685 for MoroM. For the Moderately 
Windy site, the value of k is 1.7335 and 1.5732 for 
WVM and MoroM respectively. For the very windy site, 
the WVM method gives a k value equal to 1.7934 while 
that given by the MoroM method is 1.6856. This differ-
ence from the other methods can be seen in the RMSE 
and  R2 test results. The result of the RMSE analysis, for 
the WVM and MoroM methods, reveals values that are 
far from 0. This shows that the distribution is not well 
fitted to data with the 2 methods. For the  R2 analysis, it 
can be seen that the error was bigger when consider-
ing the WVM and MoroM for the 3 sites. The coeffi-
cient  R2 of the WVM and MoroM (respectively 0.4475 
and 0.4540 for site1, 0.4737 and 0.5250 for site, 0.5783 
and 0.6397 for site 3) shows that they do not have the 
ability to correctly estimate the variables. Surprisingly, 
the WVM and MoroM methods are not suitable for the 
determination of Weibull parameters for a site regard-
less of the wind level. However, these findings are not 
consistent with previous research. In fact, for Ouahabi 
et  al. (2020) and Teyabeen et  al. (2017), the graphical 
method is found to be the poorest one for the determi-
nation of k and c.

Moreover, from the Tables 5, 6 and 7, the Energy Pat-
tern Factor Method (EPFM) shows the best performance 
on the RMSE with the lowest values (0.40727 for site 1, 
0.11304 for site 2, 0.09932 for site 3). Also, the EPFM pre-
sents the best performance on the  R2 with a value close 
to 1 (0.9895 for site 1, 0.9982 for site 2, 0.9987 for site 3). 

Table 7 Evaluation of the performance of the 14 selected methods for the site of Site 3

Methods Weibull parameters Statistical indicators

k c RMSE R2

GM 2.77725488487 6.70081559294 0.09609904779 0.96610737761

EMJ 3.10261404400 6.62467464905 0.10121349570 0.97643310577

EML 3.10261404400 6.62353618896 0.10122230668 0.97638451393

EPFM 2.97369137323 6.63732027178 0.09932790997 0.99878914435

MM 3.10364941577 6.62457190798 0.10122857902 0.97645669972

MLM 3.13128657045 6.61122836842 0.10171329865 0.97659105329

MMLM 3.13128657045 6.61122836842 0.10171329865 0.97659105329

AMLM 2.80167313500 6.52137026238 0.09778140700 0.95751198425

LSM 2.78080609501 6.70648319196 0.09610794613 0.96652221197

WLSM 3.13295771103 6.66733498718 0.10130190514 0.97879228155

CFM 3.09919457456 6.62501386131 0.10116367382 0.97635456992

WVM 1.79349036388 6.66113576059 0.98206470833 0.57839860830

MoroM 1.38565464750 6.68411988517 0.99059695603 0.63972799830

MQM 3.16149045628 6.78242313919 0.10081624491 0.98151013392
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Hence, these results show that, for the 3 selected sites, 
the EPFM have the best performance on RMSE and  R2. 
These findings corroborate with several works includ-
ing Kengne Signe et al. (2019), Mohammadi et al. (2016), 
Werapun et  al. (2015), Kidmo Kaoga et  al. (2014), who 
maintained that EPFM is the best in the calculation of 
Weibull parameters.

In summary, these results indicate that the WVM 
and MoroM methods are not appropriate while the 
EPFM is more suitable for the determination of Weibull 
parameters.

Assessment of wind power density of the sites with the 14 
methods selected
This section shows the wind power values calculated 
using fourteen methods for estimating Weibull parame-
ter distribution and those obtained using measured wind 
speed data.

Figures  4, 5 and 6 show the comparison of measured 
wind power density and predicted wind power density 
derived from different models. The wind power density 
has been evaluated using Weibull parameters for all the 
models. The lower and higher amount of wind power 
density was oscillated between 1.10465 and 3.87741 W/

Fig. 1 Probability density function of Site 1(slightly windy)

Fig. 2 Probability density function of Site 2(moderate windy)
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m2 thus a difference of 2.77276 W/m2, for Site 1. Also, in 
Site 2, the difference between lower and higher amount 
of wind power density, respectively 47.82131  W/m2 
and 85.29432  W/m2 is 37.47301  W/m2, which is closer. 
Moreover, the lower wind power density, 173.98128 W/
m2, and the higher wind power density, 273.66696  W/
m2, have a small difference (99.68568 W/m2). Addition-
ally, the analysis of these figures shows that two curves do 
not fit the histogram of the collected data. To this effect, 
all methods, besides the WVM and MoroM methods, fit 
well the frequency of the wind speed data (Figs. 1, 2 and 
3).

Furthermore, based on relative error of the estimated 
wind power density compared to the measured power 
density, there is a difference in the methods used for the 
three sites. For Site 1, Fig. 4, the EPFM gives the lowest 
relative error (13.87%) when the WVM and MoroM, with 
a relative error of 36.61%, and, gives the highest. In the 
site 2, the EPFM has the lowest values of the relative error 
(0.24%) while the MoroM gives the highest relative error 
(35.58%), as observed in Fig.  5. According to Fig.  6 for 
Site 3, the lowest relative error (0.57%) is obtained with 
the EPFM and the highest with the WVM and MoroM.

Fig. 3 Probability density function of Site 3(very windy)

Fig. 4 Analysis assessment of Wind Power Density (WPD) determined by the 14 selected methods for Site 1
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Overall, these results imply that the evaluation of wind 
power density is quite accurate with the EPFM method 
while it is not accurate with the WVM and MoroM meth-
ods because of the relative error obtained with the latter.

Analysis of the asymmetry, of the standard deviation 
and of the estimated average wind speed
From the results presented in Table 8, it is observed that 
for all sites and all methods the values of skewness are 
positive which indicate that all distributions are skewed 
to the right (Figs. 1, 2, and 3). In addition, the coefficients 
of kurtosis are negative for all sites. It is noticed that for 
Site 1, Site 2 and Site 3, the descriptive statistics of the 
calculated wind power density by all methods of Weibull 

distribution are less close to the wind power calculated 
by measured data.

It is noticed that, from the results presented in Table 9, 
the relative error of MM method is the lowest error in 
estimating standard deviation value in all the study sites, 
this is because the Weibull parameters estimated with 
this method are related to the standard deviation of wind 
speed. It means that, the application of this method pro-
vides the best accuracy at measuring the spread-out data 
values around the mean.

Table  10 presents the average wind speed estimated 
with the fourteen methods for each site. Similarly, it pre-
sents the relative error used to measure the error between 
the average wind speed estimated and that observed. For 

Fig. 5 Analysis assessment of Wind Power Density (WPD) determined by the 14 selected methods for Site 2

Fig. 6 Analysis assessment of Wind Power Density (WPD) determined by the 14 selected methods for Site 3
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this purpose, the estimation of the mean wind speed, 
over the three (03) sites, reveals that the EPFM, EMJ, 
MM, CFM, WVM and MoroM are the most suitable as 
they present a relative error of approximately zero. Thus, 
with these three methods, the average predicted speed 
is almost equal to the average speed observed at these 
sites. For each site, the average predicted speed is almost 
identical to the measured value for the three methods 
mentioned above. This velocity is 1.14539  m/s for Site 

1, 3.96314  m/s for Site 2 and 5.92471  m/s for Site 3. It 
means that all the methods can be used to estimate the 
wind potential in those sites.

Analysis of the effect of height on the determination 
of Weibull parameters
Figures  7, 8 and 9 show extrapolated values of Weibull 
parameters at 50 m, 100 m, 200 m, and 300 m in compar-
ison to measured values at 10  m for different methods, 

Table 8 Analysis of the Kurtosis and Skewness determined by the 14 selected methods for each site

Methods Site 1 Site 2 Site 3

Skewness Kurtosis Skewness Kurtosis Skewness Kurtosis

GM 0.59496 −1.22477 0.50529 −1.31859 0.13240 −1.48032

EMJ 0.61841 −1.19704 0.47925 −1.34226 0.28833 −1.44551

EML 0.61836 −1.19711 0.47891 −1.34255 0.28858 −1.44541

EPFM 0.56443 −1.25882 0.44025 −1.37469 0.23101 −1.46557

MM 0.61404 −1.20230 0.47148 −1.34902 0.28879 −1.44531

MLM 0.58373 −1.23765 0.45632 −1.36181 0.30321 −1.43908

MMLM 0.58373 −1.23765 0.45632 −1.36181 0.30321 −1.43908

AMLM 0.60801 −1.20931 0.49954 −1.32338 0.18127 −1.47788

LSM 0.59788 −1.22113 0.50640 −1.31747 0.13276 −1.48023

WLSM 0.72277 −1.05915 0.55936 −1.26506 0.29190 −1.44354

CFM 0.61501 −1.20114 0.47464 −1.34629 0.28683 −1.44614

WVM 0.21513 −1.45560 0.18525 −1.49010 −0.23556 −1.32264

MoroM 0.46965 −1.22326 0.26622 −1.47340 −0.03627 −1.44918

MQM 0.97637 −0.62010 0.74383 −1.03045 0.27942 −1.44753

Mean 0.59875 −1.18179 0.46593 −1.33549 0.19542 −1.44482

Table 9 Comparative analysis of the predicted standard deviation by each method and the measured standard deviation

Methods Site 1 Site 2 Site 3

Std RE std RE std RE

GM 0.46285 0.01333 1.70726 0.02489 2.32308 0.11220

EMJ 0.45539 0.00301 1.74060 0.00584 2.08934 0.00030

EML 0.45540 0.00297 1.74100 0.00561 2.08898 0.00013

EPFM 0.47287 0.03527 1.79331 0.02426 2.17038 0.03910

MM 0.45676 0 1.75083 0 2.08872 0

MLM 0.46652 0.02137 1.77133 0.01171 2.06885 0.00951

MMLM 0.46652 0.02137 1.77133 0.01171 2.06885 0.00951

AMLM 0.45864 0.00412 1.71306 0.02158 2.24395 0.07432

LSM 0.46186 0.01117 1.70569 0.02578 2.32249 0.11192

WLSM 0.42434 0.07097 1.64311 0.06152 2.08546 0.00156

CFM 0.45645 0.00067 1.74665 0.00239 2.09141 0.00129

WVM 0.83593 0.83013 2.35735 0.34642 3.41715 0.63601

MoroM 0.98330 1.15276 2.09691 0.19766 2.64376 0.26573

MQM 0.35991 0.21203 1.44682 0.17364 2.10518 0.00788

Measured 0.45676 – 1.47180 – 1.69784 –
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for each sites. On the left side of the figures, it appears 
that there is a decrease in the values of k with height. 
On the right-hand side, however, there is a considerable 
increase in the values of c with height. With increasing 
the height from 10 to 50 m, 100 m, 200 m, and 300 m, the 

average of shape factor of all methods decreases respec-
tively by 14.16%, 20.26%, 20.36%, and 29.93%. Otherwise, 
38.70%, 59.69%, 83.85%, and 99.65% growths of the aver-
age scale factor are observed at 50 m, 100 m, 200 m, and 
300 m, respectively.

Table 10 Comparative analysis of the predicted mean wind speed by each method and the measured mean wind speed

Methods Site 1 Site 2 Site 3

Vm RE Vm RE Vm RE

GM 1.14442 0.00086 3.96254 0.00015 5.96492 0.00679

EMJ 1.14540 0 3.96314 0 5.92471 0

EML 1.14544 0.00004 3.96406 0.00023 5.92369 0.00017

EPFM 1.14540 0 3.96314 0 5.92471 0

MM 1.14540 0 3.96314 0 5.92471 0

MLM 1.14282 0.00225 3.96031 0.00072 5.91523 0.00160

MMLM 1.14282 0.00225 3.96031 0.00072 5.91523 0.00160

AMLM 1.14859 0.00278 4.00200 0.00981 5.80709 0.01985

LSM 1.14956 0.00364 3.96742 0.00108 5.97025 0.00769

WLSM 1.13261 0.01117 3.90843 0.01380 5.96558 0.00690

CFM 1.14540 0 3.96314 0 5.92471 0

WVM 1.14540 0 3.96314 0 5.92471 0

MoroM 1.14540 0 3.96314 0 5.92471 0

MQM 1.11055 0.03042 3.77260 0.04808 6.07117 0.02472

Measured 1.14540 – 2.76110 – 3.73790 –

Fig. 7 Influence of the heigh in estimating Weibull parameters for site 1
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Fig. 8 Influence of the heigh in estimating Weibull parameters for site 2

Fig. 9 Influence of the heigh in estimating Weibull parameters for site 3
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Therefore, there is a strong relationship between the 
Weibull parameters (shape and scale) and height. These 
findings match those mentioned in earlier studies by 
Vladislovas Katinas et  al. (2017), who concluded that 
the variation of the Weibull distribution parameters k 
and c is affected by height above ground level (Bagiorgas 
et al., 2011). However, these findings differ from those of 
Haralambos et al. (2011), who maintained that the values 
of the Weibull shape parameter k were found to be inde-
pendent of height AGL, while that of the scale parameter 
c varying with height (Bagiorgas et al., 2011).

Conclusion
In this paper, fourteen methods for determining Weibull 
parameters were assessed in order to identify the one that 
will allow a better fit of the Weibull distribution, by com-
paring wind data from three different sites slightly, mod-
erately and very windy. These fourteen different methods 
were compared by statistical analyses (RMSE and  R2). 
In addition, the probability densities were compared by 
evaluating the relative error (RE) and the asymmetry 
analysis was performed. The results of this study show 
that the EPFM method is the most suitable for the deter-
mination of Weibull parameter values. This study reveals 
also that the WVM and MoroM methods are not appro-
priate for the estimation of Weibull parameters k and c. 
Finally, the asymmetry of the Weibull distribution is well 
confirmed in this work by the result of the calculation 
of the kurtosis and skewness coefficients. Furthermore, 
this study brings out that the Weibull parameters k and 
c vary with height above ground level. Additionally, the 
Weibull shape factor k was found to be decreasing with 
height AGL, while that of the scale factor c increased 
with height. A perspective to this study would be to see 
the impact of roughness and topography of the sites on 
the estimation of the wind potential.
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