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Abstract 

Globally, the construction industry is experiencing an increase in energy demand, which has significant environmen-
tal and economic repercussions. To address these issues, it is now possible for buildings, vehicles, and renewable 
energy sources to collaborate and function as an advanced, integrated, and environmentally favorable system that 
meets the high energy demands of contemporary buildings. To attain maximum efficiency, however, it is necessary to 
create reliable energy demand forecasting models. In this research, by introducing the energy model of a neighbour-
hood with buildings with solar panels and electric vehicles, the final balance of energy production and consumption 
for each building and the whole neighbourhood as a micro grid is predicted. DesignBuilder is used to model neigh-
bourhood buildings, and K-Nearest neighbor (KNN), Regression Support Vector (SVR), Adaptive Boosting (AdaBoost), 
and Deep neural networks (DNN) algorithms in machine learning are used to predict the final energy balance. a 
comparative analysis of the performance of the KNN, SVR, AdaBoost, and DNN algorithms was conducted to deter-
mine which algorithm is the most effective in predicting energy balance. Finally, the Root Mean Square Error (RMSE) 
has been used to validate the prediction models. The results show that the KNN, SVR, AdaBoost, and DNN algorithms 
had RMSE values of 0.56, 0.92, 0.95, and 0.53, respectively. Among these algorithms, the DNN and KNN algorithms 
had more accurate results than the other used algorithms and as a result of this research, An accurate forecast of 
neighbourhood energy balance was made. This study takes a novel approach by developing a model that takes into 
account an integrated system of houses, solar cells, and electric consumption for each building in a neighborhood, 
which can help to optimize energy consumption and reduce environmental impact.

Highlights 

•	 Predicting the neighborhood energy balance considering PV and EV systems
•	 Analyzing the aerial and satellite maps of the neighborhood and extracting buildings types
•	 Selecting the best algorithm to predict the neighborhood energy balance from machine learning
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Introduction
The need to reduce global energy end-use and green-
house gas emissions worldwide has boosted the imple-
mentation of energy-efficient opportunities (Env & 
IEA, 2017). According to the World Watch Institute, as 
the largest energy consumer, buildings account for 40% 
of annual global energy consumption and 36% of total 
carbon emissions, especially in urban areas (Jain et  al., 
2014; Wang et al., 2019). Growth rates of building energy 
consumption in countries (OECD1) and non-OECD 
countries for 2012 and 2040 are 1.5% and 1.2% per year, 
respectively (Conti et  al., 2016). According to Canadian 
Natural Resources, the residential sector accounts for 
13% of Canada’s final consumption (Neves et al., 2017).

Renewable resources play an essential role in the decar-
bonization of the world community. To this end, it is 
well known that a great deal of effort must be made to 
redevelop cities through the reconstruction of the build-
ing and transportation sectors, which are responsible for 
most of the total energy consumption and CO2 emis-
sions (Lirola et  al., 2017; O’Dwyer et  al., 2019). In this 
regard, electric vehicles are a suitable solution to achieve 
zero carbon emissions. Also, the use of renewable 
energy sources along with buildings can effectively move 
towards buildings with high energy efficiency (Savvides 
et al., 2019). For this purpose, solar panels are recognized 
and used as the most popular renewable source. At the 
same time, the growth in the use of solar panels provides 
the opportunity to electrify part of transportation, and 
Electric vehicles can be charged using electrical energy 
from solar panels (Coffman et al., 2017). Electric Vehicle 
(EV) and Photovoltaic (PV) combined building design 
is expected to become more common to reduce overall 
electricity demand, which can lead to reducing fossil fuel 
consumption and greenhouse gas emissions in our cities. 
(Sawhney & Kahn, 2012) Very few papers have analyzed 
the connection of EV and PV in buildings (Buonomano 
et al., 2019; Quddus et al., 2018).

Energy management and control of PV and EV inte-
grated systems refers to the process of optimizing the use 
of renewable energy produced by photovoltaic systems 
and integrating the charging and discharging of electric 
vehicles Energy management systems (EMS) can be used 
to monitor and control the energy flow in a PV and EV 
system that is integrated. An EMS can be used to opti-
mize the utilization of renewable energy, manage energy 
storage, and regulate the charging and discharging of 
electric vehicles. The EMS can also be used to provide 
real-time information on energy consumption and sys-
tem performance, enabling ongoing system optimization. 

Integration of PV and EV systems into the power grid 
effectively requires careful planning and coordination 
with local utilities. Grid integration entails ensuring that 
the system complies with all applicable local regulations 
and standards and is capable of importing and export-
ing energy to and from the grid as necessary. (Mokhtara 
et al., 2020, 2021).

Predicting the energy balance of houses integrated with 
PV and EV systems is an essential aspect of the develop-
ment of sustainable energy solutions. While significant 
research has been conducted in this field, there are still 
some gaps that need to be filled. Although the integration 
of EVs with PV systems in residential buildings is gaining 
popularity, little is known about the interaction between 
EVs and PV systems. To investigate the impact of EV 
charging on the performance of PV systems, additional 
research is required. Numerous current models for pre-
dicting the energy balance of homes with PV and EV sys-
tems rely on simplified assumptions and models. There is 
a need for more data-driven models that can accurately 
predict and capture the complexity of these systems. 
Although integrating PV and EV systems with the grid is 
essential for the widespread adoption of these technolo-
gies, the impact of these systems on the grid is poorly 
understood. More research is required to investigate the 
impact of these systems on the grid and to develop man-
agement strategies for their interaction with the grid.

Buildings have become more intelligent from a smart 
grid perspective by combining advanced information and 
communication technologies, electric vehicles, decen-
tralized storage systems, and energy production and 
management systems. Recently, research into forecasting 
energy consumption in buildings has become increas-
ingly significant. Accurate and reliable energy demand 
forecasts enable large companies to plan resources and 
balance supply and demand, thus ensuring the electricity 
grid’s stability and security and services’ reliability (Deb 
et  al., 2017). Therefore, energy consumption forecasting 
models to improve the energy efficiency of buildings for 
a sustainable economy have become an integral part of 
the building energy management system (BEMS2) (Xiao 
et al., 2018). Energy consumption forecasting models are 
generally divided into three categories:

•	 Engineering methods uses physical and thermody-
namic laws and requires complex building and envi-
ronmental parameters that are often time-consum-
ing, such as Energyplus (Bui et al., 2020).

•	 Statistical methods Relate energy consumption to 
related factors such as climate data, housing. It lacks 

1  Organization for Economic Co-operation and Development. 2  Building Energy Management System.
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precision and flexibility. Example—time series and 
linear regression (Deb et al., 2017)

•	 Artificial intelligence methods learns consumption 
patterns from historical energy consumption data, 
for example, discovering a nonlinear relationship 
between input (historical data) and output (target 
consumption) (Liu et  al., 2020a), for example, the 
SVR algorithm. Meanwhile, artificial intelligence 
approaches have become an "active research hub" 
due to their efficiency and flexibility compared to 
engineering and statistical methods. This study has 
tried to predict the final energy balance model for an 
urban area in Edmonton. The buildings in this area, 
as in Fig. 1, together with PV and EV, form a single 
system.

This research’s goal is to predict the neighbourhood 
energy balance considering PV and EV systems. First, 
some houses were selected as a case study in Edmonton, 
Canada, and by analyzing the aerial and satellite maps of 
this neighbourhood, the buildings types were extracted. 
The renewables.ninja algorithm predicts the generation 
of electricity from solar cells. The simulation output was 
given to the input of machine learning algorithms, and 
the best algorithm was selected to predict the neighbour-
hood energy balance.

Literature review
Electric vehicle
Given the growing concern about the effects of climate 
change, such as the loss of sea ice and rising sea lev-
els, to severe events such as hurricanes, droughts, or 
extreme heatwaves, it is difficult to deny the dimensions 
of what we are struggling with here, and if we increase 

the temperature by two degrees Celsius on Earth, we will 
have serious consequences (Moss et  al., 2010) .To mini-
mize these consequences, scientists are investigating the 
leading causes of climate change. They found that green-
house gases (GHG)3 such as carbon dioxide, methane, 
nitrogen oxides, and aerosols change the atmosphere 
and affect the planet more. Since cars make up 72% of 
CO2 emissions in the transportation sector (followed 
by aircraft with 10%), the electric car market is growing 
and seems to be an excellent solution to combat climate 
change (Gonçalves, 2018). Electric refueling gives advan-
tages not found in ordinary cars with internal combus-
tion engines. Electric vehicles use energy much more 
efficiently than internal combustion vehicles. This effi-
ciency can significantly reduce the energy required in the 
transportation system and help achieve an independent 
future of fossil fuels. The most important advantage of 
electric cars is their contribution to improving air qual-
ity in cities and towns. Pure electric cars without exhaust 
pipes do not emit carbon dioxide while driving. This 
significantly reduces air pollution. While reducing CO2 
emissions can help reduce global warming and the many 
related adverse effects (sea-level rise, drought, and signif-
icant weather events), electric vehicles can also positively 
affect indoor air quality.

Different types of electric vehicles (Hampshire et  al., 
2018):

Solar PanelHousePower Grid

Electric Vehicle
Fig. 1  Schematic of the selected system of buildings with EV and PV

3  Greenhouse gases.
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•	 Battery-operated electric vehicles (BEV)4 are pow-
ered solely by an electric motor and use electricity 
stored in an internal battery.

•	 Hybrid electric vehicles ((PHEV)5 powered by an 
electric motor and an internal combustion engine 
run together or separately.

•	 Wide-range electric vehicles (REEV)6 have a serial 
hybrid configuration in which their internal combus-
tion engine has no direct connection to the wheels. 
Instead, the combustion engine acts as a genera-
tor when the electric motor is low, or the battery is 
recharged. The battery can also be charged from the 
mains.

•	 Hybrid electric vehicles (HEV)7 combine an internal 
combustion engine and an electric motor to assist a 
conventional engine, for example, when accelerating 
a car.

In this research, the second type of EV is considered as 
a sample vehicle.

Zhang and his colleagues used deep learning algo-
rithms to develop a traffic flow and electric intrusion 
model and evolved a model for charging an electric car 
(Zhang et al., 2020). Ramadhani and his colleagues have 
also studied a probabilistic load distribution model con-
sidering photovoltaic systems and electric vehicles, 
considering the uncertainty in distribution systems 
(Ramadhani et al., 2020). Guzel and His colleagues pro-
vide a way to develop unique charge models for PEV8 
users with core density estimates (KDE) for intelligent 
charging strategies (Guzel & Göl, 2021). Slama proposes 
an exact Home Centralized Photovoltaic (HOCP) System 
that incorporates V2H technology, Solar Photovoltaic 
(SPV), and a Green Electric Vehicle. The proposed con-
cept aims to reduce domestic energy demand by offering 
optimal appliance automation (Zafar & Ben Slama, 2022). 
Khan studies the viability and design of a BIPV (building-
integrated photovoltaics)-powered EV charging system 
in a typical Malaysian residence that uses solar energy to 
meet residential and EV charging requirements. Three 
BIPV systems have been constructed, simulated, and 
evaluated for their performance parameters: grid inte-
grated with no battery, grid integrated with 75% battery 
storage, and grid integrated with 100% battery storage 
(Khan et al., 2022). Gholinejad proposes smart charging 
for off-board EV chargers in home-energy-hub (HEH) 

applications using solar and battery storage dc sources. 
Smart charging and discharging of EVs allows vehicle-to-
x and x-to-vehicle operations for household applications 
linked with renewable and storage aspects (Gholinejad 
et  al., 2022). Hou proposes a comprehensive strategy 
to prioritize user preferences while scheduling various 
physical equipment. A specific charging and discharging 
approach for the energy storage system and EV consid-
ering their capital cost is recommended to incorporate 
them into the HEMS for improved flexibility, economic 
benefits, and battery life. The smart home’s energy sched-
ule can be developed from mixed integer linear program-
ming (MILP) and the proposed model to ensure user 
comfort and cheap cost (Hou et al., 2019).

The importance of machine learning and forecasting 
in the energy sector
Long-term forecasting of electricity consumption is the 
basis of energy investment planning and plays a vital 
role for developing countries. Accurate power modeling 
is critical to avoid costly mistakes (Conti et al., 2016). In 
a study of two commercial building tenants using SVM, 
ANN, and KNN techniques, M Shapi and his colleagues 
concluded that SVM has a minor error and more accu-
rate prediction (Neves et  al., 2017). Nutkiewicz and his 
colleagues report integrating a 3D engineering model of 
campus with 22 buildings and integrating it with fore-
casting algorithms. The final model has high accuracy 
and excellent dynamics that can be used in the future to 
predict the energy consumption of different urban con-
texts (Nutkiewicz et  al., 2018). Xiaodong Xu and col-
leagues have developed a model for predicting the use 
of multi structural energy by combining social network 
analysis (SNA) with artificial neural network (ANN) 
techniques, and by dividing buildings into land uses, it 
has been able to make appropriate predictions with an 
accuracy of over 90% (Xu et al., 2019) .In another study, 
YangLiu developed a support vector method (SVM) for 
predicting and detecting energy consumption of public 
buildings based on 11 input parameters, including his-
torical energy consumption data, climatic factors, and 
time cycle factors which can be used to manage build-
ing operations (Liu et al., 2020b (XJ. Luo and colleagues 
developed three machine learning multi-objective fore-
casting frameworks for simultaneously predicting mul-
tiple energy loads. Three machine learning techniques 
include artificial neural network, vector regression sup-
port, and short-term memory neural network. The ANN 
network-based prediction model has the lowest mean 
absolute error percentage, while an SVM-based one costs 
the shortest calculation time (Luo et al., 2020). Kim sug-
gests a CNN-LSTM neural network to forecast dwell-
ing energy use using spatial and temporal information. 

4  Battery electric vehicles.
5  Plug-in hybrid electric vehicles.
6  Range extended electric vehicles.
7  Hybrid electric vehicles.
8  Plug-in electric vehicles.
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CNN-LSTM neural networks can extract complex 
energy usage information. The convolutional neural net-
work (CNN) layer can extract features between energy-
consuming variables, and the long short-term memory 
(LSTM) layer can represent temporal information of 
irregular trends in time series components (Kim & Cho, 
2019).

Comprehensive information about Canada
It is difficult to track the quantity of off-grid capacity, 
which is deemed small in comparison to grid-connected 
capacity. In Canada, however, you can find off-grid solar 
PV applications (with or without battery storage) or 
hybrid systems that include a small wind turbine or die-
sel generator. These systems are often located in remote 
northern settlements, but as costs decrease and sys-
tem installers and the public become more aware of the 
prospects, they are increasingly being built in less dis-
tant places. At the end of 2019, the national cumulative 
installed PV capacity was 3.33 GWDC. This reflects an 
about 7.5% increase over the previous year. The growth 
in installed PV capacity in 2019 was 232 MWDC (com-
posed of 115.3 MWDC of transmission-connected and 
116.6 MWDC distribution-connected capacity). Off-grid 
PV is not tracked and is presumed to be small in com-
parison to the total for grid-connected PV (Associa-
tion, 2019). By 2030, Canada aims to reduce greenhouse 
gas emissions 30% below 2005 levels. To keep the world 
average temperature below 1.5  °C, Canada supports the 
2015 Paris Agreement and the global transition to a low-
carbon economy. Regarding PV policy, the definition of 
support measures is generally left to the provinces and 
territories. As previously stated, PV will be eligible for a 
number of national support programs announced by the 
Federal Government in 2017, including the $500 million 
Low Carbon Economy Challenge Fund, the $220 million 
Clean Energy for Rural and Remote Communities pro-
gram, and the $100 million Smart Grid Program. (Asso-
ciation, 2019).

Detached houses, semi-detached houses, townhomes, 
and condominiums are the most common types of hous-
ing in Canada. 52.6% were single-detached houses, 5% 
were semi-detached houses, 6.5% were row-houses, 5.5% 
were apartments in a duplex, 18.3% were apartments in a 
building with fewer than 5 stories, 10.7% were apartments 
in a building with 5 or more stories, 0.2% were other 
single-attached houses, and 1.3% were mobile homes. 
Detached houses are one of the most common types 
of homes in Canada. A detached house is essentially a 
house that does not share a wall with another house and 
is surrounded on all sides by open space. In recent years, 
2-Storey Houses have become the most prevalent type of 
detached home in Canada. Living and working areas are 

typically located on the lower level, while sleeping areas 
are typically located on the upper level. A bungalow is a 
type of detached house with all rooms on a single level. 
On occasion, a bungalow may have a study room or a 
bedroom on the attic level, which is accessible via stairs 
and built within the sloping roof. Split-level homes are 
homes in which the main floor is divided across multi-
ple levels connected by a short flight of stairs rather than 
a full staircase. A 1.5-story home has two floors, but the 
second floor does not encompass the entire ground floor. 
Typically, the smaller space located upstairs is a bedroom 
(“All Types of Houses in Canada | WOWA.ca”, 2023).

Methodology
Machine learning and explicitly programming solve com-
puter science problems differently. Programmers write 
particular instructions or algorithms in explicitly pro-
gramming. The program performs the programmer’s 
commands in a predetermined order. The program can 
only handle specified input and output data and requires 
human involvement to update or modify. Machine 
learning programs learn from data without being pro-
grammed. Machine learning algorithms learn patterns 
and relationships from training data instead of describing 
each step. The trained algorithm can predict or decide 
on new data. More data helps the software and model 
improve. In essence, directly programming includes 
manually writing code to do a task, while machine learn-
ing involves training a program to learn from data and 
make predictions or choices. Both methods have pros 
and cons and suit different problems.

In order to implement this method, first, the studied 
case was examined and selected, and related informa-
tion was collected. In the next step, information on the 
characteristics of buildings in the desired neighborhood 
and building standards in Canada was collected so that it 
could be used to simulate buildings in the DesignBuilder 
program. The output of building simulation and various 
building information was processed to be used as input 
for artificial intelligence tools to predict the balance of 
houses. The developed data served as input for the algo-
rithms in the form of seven characteristics: hour, day, 
month, building type, solar panel surface area, building 
area for each building, and building heat load. The output 
and objective function of each model took each home’s 
energy balance into account. In Fig.  2, the essential 
phases of the employed technique are outlined in detail.

After predicting each house’s energy balance, the whole 
neighborhood’s energy balance is calculated as a micro-
grid. At the end of this prediction, the types of methods 
used are checked for accuracy.
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Case study description
According to the purpose of the research, the use of 
building modeling tools and machine learning algorithms 
to measure the feasibility of using renewable energy to 
supply the energy needed for homes and electric vehicles 
in a neighbourhood has been investigated. A neighbour-
hood in Edmonton, Alberta, Canada, has been analyzed 
for this purpose. Figures 3 and 4.a show the 2D and 3D 
views of the case study, respectively.

The next step is the extent to which each house can 
absorb solar energy. Data on the amount of solar energy 
absorption potential and even the number of panels 
installed in each house in Edmonton is available on the 
MyHeat website (Solar-Myheat. 2023). The required 
information is available by referring to the solar maps 
section on this site. Figure 4b shows the solar map of the 
study area. By selecting the desired house, helpful infor-
mation such as the maximum installable area of the panel 
according to the three-dimensional shape of the roof, the 

Fig. 2  Flowchart of detailing the essential stages of the employed 
method

Fig. 3  a 2D view of the study area b Edmonton city map and selected neighbourhood in the northwest of the city c The study area in the 
BRINTNELL area



Page 7 of 18Mirjalili et al. Sustainable Energy Research            (2023) 10:8 	

number of required panels according to the site estimate, 
and the amount of net sunlight absorption during a year 
are displayed. Figure 5 shows a sample of the results.

Modelling in designBuilder
One of the most important parts of energy consump-
tion in buildings is the heating sector. About 63% of 
energy consumption in Canadian buildings is spent on 
heating on average (City of Edmonton, 2017). Design 
Builder software is a powerful software with the Energy 
Plus engine that can calculate the amount of heating and 

cooling load. To obtain the desired output, we must first 
model the desired buildings in the software. Modeling 
in Design Builder software consists of three parts: (A) 
building geometry modeling. (B) entering the required 
information. (C) concluding.

In the first step of modeling, the drawings of the build-
ings were drawn in the Builder Design software. Since a 
specific map of the buildings in this neighbourhood is not 
available, the drawings on the Houseplans site have been 
used for modeling (HousePlans. 2018). The buildings 
were surveyed, and the types that most closely resembled 

Fig. 4  a 3D view of the case study b Solar potential of building roofs

Fig. 5  MyHeat site output for a building located in the case study
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the 3D views were selected and drawn. For example, 
Fig. 6 shows an example of these buildings and their map. 
In the next step, according to the exterior views of the 
buildings, four types of buildings on the Houseplans site 
were selected and simulated, and then the whole neigh-
bourhood was modeled in the software. Figure 7 shows a 
view of the simulated neighbourhood in Builder Design. 
Then, the data related to Design Builder software, which 
is given as input, were collected and entered into the 
software. This data includes weather information of the 
area, information about the material and building mate-
rials and ventilation systems in each building. Edmon-
ton’s climate information is available by default in Design 
Builder, and it is sufficient to select it as a climatic refer-
ence for analysis at the beginning of the modeling. The 
selection of materials for the building, the type of layers, 
and their arrangement in different parts is very influen-
tial in the final result of the analysis. Since building infor-
mation is not available in the selected area, the existing 
standards for construction in the area should be used to 
reduce the uncertainty in the results (Tian et al., 2018)

The Canadian National Building Standard (NBC9) is 
used to select layers. Section 9–36 of this standard con-
tains tables that specify the minimum overall heat trans-
fer coefficient for the various sections. Using the available 
resources for different parts of the conventional layering 
was selected according to the National Standard of Can-
ada to comply with the items related to heat transfer. It 
should be noted that the city of Edmonton is known by 
the code 7a in the tables. Figure 7 shows an example of 
the materials selected for the exterior wall that meet the 
specified standards.

The software is ready to solve and present the results 
by entering the necessary information. The results will 
be displayed in the results section of the report. In this 
research, solar panels are used only to meet the demand 
for electrical appliances and electric vehicles, so the 
energy needs of the two energy consumers, space heating 
and water heating, are not met. Considering solar energy 
in the initial design is the best way to use solar energy 
for heating, and the use of panels is the best way to meet 
electricity demand.

Modelling building electrical load
The assumptions made for calculating the electric charge 
of buildings in the neighbourhood are as follows. The 
number of people in each house was considered an 
average of 5 people. The minimum electrical appliances 
in each house are one TV, one refrigerator, one cooker, 
one washing machine, one microwave and mixer and 
tester, two laptops and four cell phones, three fans, and 
a hybrid electric car. According to the study area, the 
electrical charge output of each house is calculated on 
an hourly basis for 1 year using the simulation of Design-
Builder software. This calculation is without considering 
the amount of electric vehicle consumption. In the next 
step, the electric car’s daily load is added to each house’s 
household load, and finally, the total electricity con-
sumption of each house is calculated in an hourly period 
for one year. For the electric vehicle intended for each 
household, the electric charge of the electric vehicle was 
extracted using the work method of Göhler and his col-
leagues, which is described in Fig. 8 (Göhler et al., 2019).

Figure 9 shows that the load peak is applied to the grid 
from 1 to 5 pm, as this time is approximately in the range 
of business hours for Canadian families.

By examining the best-selling solar panels in the Cana-
dian market with the highest production efficiency, the 
SPR-A425-G-C model was selected, with the highest 
electricity generation efficiency of 22.8% among solar 
panels, by selecting the panel and considering the 22.8% 
efficiency rate and using the method developed by Pfen-
ninger and his colleagues (Pfenninger & Staffell, 2016) for 
the potential of generating electricity using solar panels 
for each house and entering the exact geographical char-
acteristics of the study area of each house. The basis of 
myheat site calculations is based on this article, which 
calculates the area that can be installed solar cells for 
each house by relying on the GIS system and choosing 
the geographical location of the houses. Hourly power 
per square meter was obtained as an annual data set. 

Fig. 6  Simulated buildings and maps of HousePlans 9  National Building Code of Canada.



Page 9 of 18Mirjalili et al. Sustainable Energy Research            (2023) 10:8 	

Electricity generation calculations for each house are as 
follows:

Ai ith house area in the neighbourhood.
Pgen,i,h,m ith house Electricity generation capacity at 

the ith hour in 1 square meter.
Pgen,i,h ith house power generation capacity at hth.
The time period for reviewing the data is hourly, so 

the power and the amount of electricity consumed per 
hour are equal ( Ei,h = Pi,h ). Calculating the difference 
between production and demand shows what the con-
dition of each house will be at each hour of the year. 
The hourly balance of total electricity for the house i at 
hour h is calculated as follows:

(1)Pgen,i,h = Pgen,i,h,m × Ai

(2)Edemand,i,h − Egen,i,h = ETotal,i,h

Edemand,i,h ith house power consumption at hth hour.
Egen,i,h ith house power generation at hth hour.
ETotal,i,h ith house electricity balance at hth hour.

Fig. 7  3D view of the analyzed neighbourhood and its simulated sample in Design Builder

Fig. 8   The structure of external walls
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If the electricity generation is more than the amount 
consumed, ETotal,i,h will be negative, which can be used 
for other houses in the neighbourhood. The balance of 
total electricity for the neighbourhood is obtained from 
the following relation:

n Number of houses in the neighbourhood
ETotal,h Electricity balance of the whole neighbourhood 

at h hour.
If ETotal,h at h hour is negative, the neighbourhood can 

export the generated electricity over its consumption to 
the general electricity grid.

Figure 10 shows the neighbourhood energy balance for 
24 h from the 1 day of the year. As shown in the figure, 
the balance of energy consumption is negative in some 
hours, indicating that the excess electricity generated is 
delivered to the grid.

Machine learning
Machine learning and explicit programming are two 
distinct methods for solving computer science prob-
lems. In the explicitly programming methodology, pro-
grammers write specific instructions or algorithms to 
complete a task. The programmer specifies each phase 
of the program, which is then executed in a predeter-
mined order. The resulting program is limited to specific 
input and output data and requires human interven-
tion to be updated or adapted to new circumstances. In 
machine learning, the computer program is designed to 
automatically learn from data without being explicitly 

(3)ETotal,h =

n∑

i=1

ETotal,i,h i ∈ 1, ..., n

programmed. A machine learning algorithm is trained 
on a set of examples, known as training data, to identify 
patterns and relationships within the data. Once the algo-
rithm has been trained, it can be used to predict or make 
decisions based on data it has never seen before. The pro-
gram is capable of adapting and learning from new data, 
and the model’s accuracy can increase over time.

In conclusion, explicitly programming requires the 
programmer to manually write code for a specific task, 
whereas machine learning involves training a program to 
learn from data and make predictions or decisions based 
on this learning. Both approaches have advantages and 
disadvantages, and are suited to various types of issues.

In the machine learning subject, the objective was 
defined so that by having the house characteristics, 
electricity consumption and production of the house, 
neighbourhood, and finally, the general condition of the 
electricity network can be calculated. According to the 
intended purpose, the existing problem is a regression 
problem, explained below. It is noteworthy that 20% of 
the data obtained are used for testing, and 80% are used 
for learning.

KNN algorithm
The first algorithm used for forecasting is the K-NN 
(K-Nearest neighbor) algorithm. This machine learning 
method is often used due to its simple criteria and pre-
dictability in a complex nonlinear pattern (Tian et  al., 
2018). This method predicts using similar items in the 
original data (Göhler et al., 2019). This method has been 
used to predict the energy balance of the building. Using 
optimization methods, the optimal value of K was 4.
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SVR algorithm
The support vector machine can be used as a regression 
method, retaining all the essential features that define the 
algorithm (maximum margin). Regression Support Vec-
tor (SVR) uses the same principles as SVM10 for classifi-
cation, with only a few minor differences. First, because 
the output is a real number, predicting the available infor-
mation with infinite possibilities becomes complicated.

Adaboost algorithm
AdaBoost stands for Adaptive Boosting, a statistical 
classification algorithm formulated by Yoav Freund and 
Robert Schapire. It can be used with many other types 
of learning algorithms to improve performance. The out-
put of other learning algorithms (‘‘weak learner’’) is com-
bined as a weighted sum representing the final output 
of the amplified classifier. AdaBoost is consistent in that 
subsequent poor learners change in favor of what has 
been done by previous classifiers. Some problems may be 
less prone to attachment than other learning algorithms. 
Individual learners can be weak, but as long as the per-
formance of each is slightly better than random guess-
ing, the final model can be converged to a strong learner. 
Each learning algorithm is more suited to some types of 
problem than others, and usually has different param-
eters and settings that must be adjusted before working 
optimally on a data set. AdaBoost with decision trees as 
(poor learners) is often known as the best out-of-the-box 
classification. When decision tree learning is used, the 
information gathered at each stage of the AdaBoost algo-
rithm about each training instance’s relative ‘‘hardness’’ 
is entered into the tree growth algorithm so that subse-
quent trees tend to be more challenging to classify.

ANN11 algorithm
Artificial neural networks (ANN), commonly referred to 
as neural networks (NN12), are computational systems 
inspired by biological neural networks that make up the 
animal brain. ANNs are essentially massive parallel com-
putational models that mimic the function of the human 
brain. An ANN consists of many simple processors inter-
connected by weighted connections. By analogy, process-
ing nodes may be called ‘‘neurons’’. The output of each 

node depends only on information that is locally avail-
able in the node, whether stored internally or through 
weighted connections. Each unit receives inputs from 
many other nodes and sends its output to other nodes, 
which is not a very powerful processing element. It pro-
duces a scalar output with a single numeric value which is 
a simple nonlinear function of its inputs, and the system’s 
power appears (Dongare et  al., 2012). Deep neural net-
works (DNNs) are artificial neural networks (ANNs) with 
multiple concealed layers between the input and output 
layers. DNNs can model complex nonlinear relation-
ships similarly to shallow ANNs. The primary function 
of a neural network is to receive a set of inputs, perform 
increasingly complex calculations on them, and pro-
duce output to solve real-world classification problems. 
We only consider feed forward neural networks. A deep 
network has an input, an output, and a flux of sequential 
data. According to the model developed for this problem, 
the number of input layer neurons is 128, and 64 hidden 
layers and one output layer are designed. Figure 11 shows 
the outline of the DNN algorithm implemented for the 
electric charge prediction problem.

Result and discussion
Design builder result
Design Builder software outputs both network and dia-
gram. Its network output is an Excel file, which can be 
very efficient for analyzing data in machine learning algo-
rithms. Also, these outputs can calculate the data related 
to energy consumption in different sectors on a monthly, 
daily, hourly, or even second level during a year.

The accuracy of software outputs is directly related to 
the accuracy of the data entered into the input nuances; 
Therefore, an essential part of modeling is the accuracy 
of the input data. In this research, the output is calculated 
for the amount of heating load and cooling load. Also, the 
amount of carbon dioxide production, which is one of the 
most critical environmental parameters, is received from 
the output. All of these outputs are for two consecutive 
years, calculated monthly basis each year. The outputs are 
also taken in the form of graphs and Excel files. Modeled 
buildings can be divided into three general categories 
based on geographical location:

•	 South–north buildings
•	 North–south buildings
•	 East–west buildings

Fig. 11  Overview of DNN algorithm for the electric charge prediction problem

10  Support Vector Machine.
11  Artificial Neural Network.
12  Neural Network.
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Given that the building’s area in the neighbourhood 
is almost the same and their maps are slightly different 
from each other, so it was predicted that the buildings 
in a row with the same geographical angle had approxi-
mately the same outputs and the main difference was 
when the geographical angles of the buildings were 
different.

Figure  12a shows that the need for cooling load in 
the Canadian climate is minimal, and the heating peak 
occurs in January, which is about 3000  kWh. As shown 
in Fig.  12b, north–south buildings, like south-north 
buildings, do not require cooling loads. The heating load 
in these buildings is slightly higher than in south-north 
buildings. Figure  12c shows that East–West buildings 
need cooling load due to their location in summer, and 
this peak occurs in July.

Figures  13a–c also show the production of CO2 for 
each of these categories. This produced carbon dioxide 
is proportional to the heating and cooling load of the 
building.

Energy balance results
To calculate the energy balance of each house, we sub-
tract the hourly power generation data from the photo-
voltaic panels from the power consumption data from the 
simulation in the Builder Design software. The number is 
the energy balance of each house in a specific month, day, 
and hour of the year. It can be seen that there is a nega-
tive balance in some hours of the day. This means that 
electricity generation exceeds the consumption of the 
desired home.

Figure  14a and b show the energy balance for houses 
No. 3904 and 3928 on the first day of the year, January 
1. It can be seen that the energy balance of each house 
varies according to its characteristics; Therefore, there is 
a need for a model that can predict the energy balance 
of the house according to the desired characteristics. 
Figure 14c shows the energy balance of house No. 3904 
for the month of January, which varies with the hourly 
energy balance during 1  month of the year, considering 
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the electricity consumption, intensity, and angle of the 
sun.

Figure 15 shows the energy balance of the study neigh-
bourhood in January. According to the obtained data, it 

can be seen that the energy balance of the neighbour-
hood depends on the composition of the studied houses, 
so the focus of modeling should be on predicting the load 
of each house. Finally, after predicting the energy balance 
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output
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of each house, the energy balance of the small network 
can be obtained.

Machine learning algorithm result
The developed data were given as input to the SVR, Ada-
boost, KNN, and DNN algorithms as seven input char-
acteristics: hour, day, month, building type, solar panel 
surface area, building area of each building, and building 
heat load. The output and objective function of all mod-
els considered the energy balance of each house. For the 
KNN algorithm, the optimal k number for this algorithm 
was calculated to be 3. For the 3-layer DNN algorithm, 
the input layer with 128 neurons was selected according 
to 7 features (27 = 128), the hidden layer with 64 neurons, 
and the output layer with one neuron. In this section, 
learning outputs are plotted for each algorithm. Figure 15 
shows the diagrams for all four algorithms.

In Fig. 16, the blue lines indicate the predicted results, 
and the red lines represent the actual outputs of the origi-
nal data. For each algorithm, 100 test data were randomly 
selected from the database, and the actual value was 
compared with the value predicted by the corresponding 
model. As can be seen, the energy balance of each algo-
rithm has a different accuracy. In the RMSE benchmark 
section, the accuracy of each algorithm is compared, and 
the best is recommended.

The resulting trained model can be developed in the 
neighbourhood and input a set of buildings with the fea-
tures required for the model, and the output of the model 
will be the energy balance of all buildings during the 
day. The sum of all these balances reports the microgrid 
(neighbourhood) balance.

RMSE benchmark
Before entering the data into the machine learning algo-
rithm, the data were divided into two groups, according 
to which 80% of the data set was used for training, and 
the other 20% were divided as testing data groups. Sev-
eral models with different adjustment parameters were 
created during model training for each method. After 
regular adjustment to the maximum relevant parameters, 
each model was evaluated based on Root Mean Square 
Error (RMSE). Table  1 shows the RMSE value for each 
algorithm.

Conclusion
Due to the increasing emissions in cities, the need to 
replace electric vehicles and use solar panels as clean 
energy is increasingly felt. A model by which the energy 
balance of a home can be predicted by considering elec-
tric vehicles and solar panels is also of great importance. 
It can help study electric car tires and solar panels on 
the power grid. This paper extracted the data required 
for different machine learning algorithms by studying a 
neighbourhood in Edmonton, Canada, examining the dif-
ferent dimensions of houses in this neighbourhood, and 
simulating them.

This study analyzed a neighbourhood consisting of 29 
houses in Edmonton, Canada, and a model related to the 
house electrical energy balance was developed. The most 
important parameters required for this modeling are the 
type of building, the area of the house infrastructure, the 
area of the house’s photovoltaic panels, the house’s heat 
load, and the time variables of the month, day, and hour. 
In this study, four well-known regression algorithms 
were used in the machine learning discussion, the best 
of which is the DNN algorithm with 128 neurons in the 
input layer, 64 neurons in the middle layer, and one neu-
ron in the output layer. The predicted energy balance 
results show that during the hours of the day, when the 
sunlight is at its best in terms of radiation level and the 
radiation angle, the neighbourhood can generate more 
electricity than its consumption. Excess electricity can 
be delivered to the national grid. Due to the average 
production time of consumption, which is around 10 
to 15 o’clock, this surplus electricity can be consumed 
in industries, which itself is a significant help in reduc-
ing the amount of carbon dioxide caused by electricity 
generation.

The algorithms for learning are SVR, Adaboost, KNN, 
and DNN models. Among these four algorithms, the 
DNN algorithm had the lowest RMSE index and using 
this model, a good prediction for neighbourhood bal-
ance was made. Further studies in this field are needed by 
considering more parameters and features of the building 
to consider a comprehensive model for green buildings 
and make this information available to decision-makers 
in this area to see an increasing number of homes using 
clean energy.
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