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Abstract 

Modern offshore and onshore green energy engineering includes energy harvesting—as a result, extensive 
experimental investigations, as well as safety and reliability analysis are crucial for design and engineering. For this 
study, several wind-tunnel experiments under realistic in situ wind speed conditions have been conducted 
to examine the performance of galloping energy harvester. Next, a novel structural reliability approach is presented 
here that is especially well suited for multi-dimensional energy harvesting systems that have been either numerically 
simulated or analog observed during the representative time lapse, yielding an ergodic system time record. As 
demonstrated in this study, the advocated methodology may be used for risk assessment of dynamic system 
structural damage or failure. Furthermore, traditional reliability methodologies dealing with time series do not easily 
cope with the system’s high dimensionality, along with nonlinear cross-correlations between the system’s 
components. This study’s objective was to assess state-of-the-art reliability method, allowing efficient extraction 
of relevant statistical information, even from a limited underlying dataset. The methodology described in this study 
aims to assist designers when assessing nonlinear multidimensional dynamic energy harvesting system’s failure 
and hazard risks.
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Introduction
Since wind energy is green and renewable, as advertised 
by global political agenda nowadays, energy harvesters 
(EH) became recently a popular research topic. 
Engineering research is also being done on micro- and 
nano-size EHs. Micro-scale wind energy is captured 
using piezoelectric, triboelectric, and electrostatic 
EHs; macro-scale wind energy is captured using an 
electromagnetic EH. Low-frequency EHs technology has 
been recently shown to be practical and advantageous. 
These innovations have been developed to supply energy 
to a variety of low-cost, low-power gadgets, including 
MEMS and Wireless Sensor Networks (WNS). It has 
been demonstrated that piezoelectric vibration energy 

harvesting (PVEH) is able to transform environmental 
mechanical vibrational energy into electrical energy. 
Mechanical vibration is of an irregular and intermittent 
nature, resulting in aero-instability in the form of 
resonant vibrations. Thus, employing flow-induced 
vibrations (FIVs) to generate energy has been proven 
to be practical. Vortex-Induced Vibrations (VIV), wake 
galloping, galloping, and other related phenomena 
represent examples of FIVs. In the past decade, various 
investigations have utilized innovative experimental, 
numerical, and theoretical methods. In Albaladejo 
et  al. (2010) the authors introduced a model for EH 
aero-instability coupling. In Mehmood et  al. (2013) the 
authors presented the CFD approach to describe VIV 
Piezoelectric Energy Harvesters (VIVPEH). In Fazeres-
Ferradosa et al. (2018a) the authors studied the Galerkin 
algorithm, applied to theoretical VIV piezoelectric EH 
features, with a series of laboratory tests carried out to 
examine the optimization process of a multifunctional 
VIVPEH device. In recent research (Dai et  al., 2014) 
the authors have reported a transition from VIVPEH 
to GPEH, by adding 2 Y-shaped attachments. In Wang 
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et al. (2019) the authors have used bistable and tristable 
features, subsequently examining GPEH nonlinear 
system response.

Energy harvesting systems are significant in both 
offshore and onshore applications. The hazards of ocean 
pollution are progressively rising as the oceanic industry 
increases. Devices for monitoring the water, such as 
various types of sensors, are created to address this kind 
of issue. Data can be gathered from remote locations 
and sent to local stations using sensors (Albaladejo 
et  al., 2010; Zhao et  al., 2021). As a result, the batteries 
need to be replaced or recharged, which are both highly 
expensive, time-consuming, and labor-intensive tasks. 
Additionally, because batteries are large and heavy, they 
impede the development of small and light electronic 
gadgets. On the other hand, the damage to ocean life 
and the environment posed by the potential leakage of 
hazardous chemicals from batteries is a concern. Because 
of this, it is crucial to make maritime gadgets battery-free 
and self-powered (Gong et al., 2019).

Ocean pollution and water quality evaluations now 
include various low-energy consumption sensors 
because of the use of technologies like Micro-Electro-
Mechanical Systems (MEMS). The most prevalent 
trends in the recently developed sensors and electronic 
gadgets are miniaturization, decreasing power 
consumption, and portability. These sensors only gather 
information from the water and transmit it to stations 
for additional examination. Chemical batteries have 
often been used to power these gadgets. But more often 
than not, the battery life is less than the sensor life. The 
majority of recent research described above has been 
concentrated on improving EH dynamic performance, 
and only a few of them have been focused on certain 
relevant design considerations, including EH critical 
reactions and fatigue life. Studying EH’s extreme 
system response and minimizing the hazardous effects 
of surrounding environments are crucial steps in the 
contemporary EH design process. In order to assess 
EH’s wear and damage, the authors in Abdelkefi (2016), 
Amin and Hussian (2014), Dai et  al. (2014), Fazeres-
Ferradosa et al. (2018a), Mehmood et al. (2013), Wang 
et  al. (2019), Yang et  al. (2019) have investigated the 
reliability and durability of the P1 MFC transducer, 
subjected to base excitations. In Wang et  al. (2020) 
the authors reported experimental findings, where 
EH suffered damage at acceleration levels of 0.4 to 
0.5  g. In Zhao and Yang (2018) the authors studied 
the EH performance of DuraAct (DuraAct P-876.A12 
from Physik Instrumente GmbH & Co. KG.) piezo-
sheet mounted EH on the railway, EH was reported to 
fail after about 100 cycles, under acceleration of 1  g. 
Next, in Daqaq (2015) the authors have applied a P-2 

MFC sheet, using finite element method (FEM) and 
laboratory tests to study long-term fatigue life of EH. 
In Gaidai et  al. (2023), the authors stated that after 2 
million cycles at EH base acceleration levels of 0.4, 0.5, 
and 0.6 g, respectively, the sizable decline in EH output 
values occurred, resulting in initial damage to the EH 
piezo-transducer. In Fazeres-Ferradosa et  al. (2018b) 
authors proposed fluid flow nozzle-based EH, under an 
incoming flow rate of 15 L/min, then EH’s beams were 
damaged in a matter of minutes. Steel shim reinforced 
EH beam withstood a flow rate of about 17 L/min, for 
around 40  min, and after 9  h of testing, no damage 
has been reported under a flow rate of 9 L/min. There 
was not much relevant research concentrating on 
EH durability for flow-based EHs, such as galloping-
based piezoelectric EHs (GPEH) (Rugbjerg et  al., 
2006a). There have not been much studies done on the 
reliability of wind-induced vibrational EH dynamic 
performance, supported by experimental tests. 
Few studies have examined the EH system extreme 
performance and, consequently, reliability, and safety of 
EH operating conditions. Recent studies have typically 
concentrated on EH’s beam behavior under fatigue 
loadings, due to specific excitations, to estimate EH’s 
lifetime.

This study focuses on extreme value statistics of the 
GPEH dynamic system’s response. Both theoretical 
and experimental research have been done in order to 
examine the dynamic performance of particular gallop-
ing EH. The experimental setup and specifics of the EH 
bluff body have been presented in Fig. 1. GPEH dynamic 
performance has been evaluated in a wind tunnel, using 
a circular inlet cross section. By installing a honeycomb 
structure within a wind tunnel’s settling chamber, hav-
ing a diameter of 400 mm, steady incoming air flow was 
created, and wind speed ranged within 1 ≤ U ≤ 6  m/s. 
Piezoelectric sheet (Model: PZT-5, JiaYeShi, China) of 
30 × 20 × 0.5 mm3 has been mounted on a substrate, 
made of aluminum, having dimensions of 200 × 25 × 0.5 
mm3 when designing the GPEH cantilever. Free-end of 
the GPEH piezoelectric cantilever has been attached to 
a circular-sectioned bluff body (Wang et al., 2020). GPEH 
bluff body has been made of a hardened foam, having a 
length of 0.12  m, and a diameter of 0.03  m. Prototyped 
GPEH piezoelectric cantilever damping ratio ζ has been 
measured, using the logarithmic decremental technique. 
For physical parameters of the GPEH experimental 
prototype, see Table  1, where Cp is GPEH’s piezoelec-
tric transducer clamping capacitance; M being GPEH’s 
bluff body effective mass; ζ1 GPEH’s damping ratio; ω1

—GPEH’s natural vibrational frequency; θ—equivalent 
electromechanical coefficient, for further details, see 
(Wang et al., 2020).
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The free end of EH’s circular-sectioned bluff body has 
been attached to its piezoelectric cantilever (Albaladejo 
et al., 2010). Incoming wind speed U has been measured, 
using hot-wire anemometer (Model: 405i, Testo Co., 
USA). GPEH voltage output has been measured, using a 
digital oscilloscope (Model: DS1104S, RIGOL., China), 
for GPEH experimental setup see (Wang et al., 2019).

It is important to note that a GPEH’s intended use is 
to practically harvest low-speed wind energy: U ≤ 7 m/s, 
within the so-called “strong-breeze” region, Table 2.

Traditional propeller generators work better, when 
wind speed is high (7  m/s and above) because their 
motor size better matches these wind speeds.

Finally, it is worth mentioning a variety of other 
existing GPEH types: enhanced GPEH, having 
cooperative modes of collisions and vibrations, 
(Rugbjerg et  al., 2006b); EH with self-regulating 
triboelectric nano-generators, self-powered wind 
speed sensor (Franck & Luc, 2011; Larsen et  al., 2015; 
Mouslim et  al., 2008; Teena et  al., 2012); magnetically 

coupled water-proof piezoelectric-electromagnetic 
hybrid wind EH (Cheng et  al., 2003; Cook & Harris, 
2004; Ewans, 2014; Heffernan & Tawn, 2004; Jensen 
& Capul, 2006; Kim & Lee, 2015; Li et  al., 2013; Zhao 
& Ono, 1999). This study is structured as follows: in 
the next section novel reliability methodology will 
be introduced, followed by the application of this 
reliability methodology to a particular GPEH device 
and its laboratory-recorded measurements.

Method
This section describes the Naess–Gaidai (NG) 
extrapolation approach (Gaidai et  al. 2023a; Zhang et  al. 
2018), which is based on Weibull distribution with 3 
parameters, and is applicable to a variety of unidimensional 
random system components. The requirement to 
do long-term statistical analysis for the structure of 
interest typically drives motivation for reliability study 
in engineering and design. The 3-parameter Weibull 
distribution is briefly introduced in the paragraph that 
follows. In reliability analysis, Weibull distribution 
has proved a potent choice: in contrast to exponential 
distribution, it offers a significantly wider application 
range. In reliability engineering, Weibull distribution 
is a viable substitute for both Gamma and Lognormal 
distributions. Weibull and exponential distributions have 
recently been given a number of weighted iterations in the 
literature

(1)G(x, �,β , θ) = 1− e−�W (x−θ)β

Fig. 1  Wind tunnel experimental setup

Table 1  GPEH experimental prototype geometrical and physical 
parameters

Properties Value

M (gram) 4.2

ζ1 1.3 × 10−2

ω1 (rad/s) 48.0

θ (N/V) 5.0 × 10−5

Cp (nF) 30.5
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with �W ,β , θ being the scale, shape, and minimum 
lifespan (location) parameters respectively, and 
�W > 0,β > 0, x > θ . In lifetime data analysis, θ is 
typically referred to as a threshold, guarantee time or 
a parameter, and �W  is the mean time to failure. NG 
method is based on adding 1 more parameter q to the 
3-parameter Weibull’s distribution

with q > 0.Weibull distribution is well suited for mode-
ling different environmental loadings, as well as structural 
reactions to such loadings. The distribution described 
by Eq.  (2) will be referred to as “modified Weibull” or 
“4-parameter Weibull” in the sections that follow. As can 
be demonstrated, the essence of the NG technique—the 
modified Weibull distribution, happens to be a suitable 
approximation for empirical probability density function 
(PDF) tails, namely when x → ∞ , for various engineering 
and design problems. As is customary in wind engineer-
ing, we will demonstrate the advocated approach in the 
sections that follow, by completing so-called short-term 
analyses for stationary environmental conditions. In situ 
scatter diagram, which will not be discussed in this study 
because it is being common knowledge, may be used for 
long-term analysis. In general, it is often challenging to 
assess realistic environmental system reliability function, 
using established theoretical reliability methodologies 
(Aarnes et  al. 2012; Battjes and Groenendijk 2000; Bid-
lot and Janssen 2003; Cook and Harris 2004; Ferreira and 
Guedes 2000; Franck and Luc 2011; Gaidai et  al. 2020, 
2023b; Larsen et al. 2015; Mouslim et al. 2008; Rugbjerg 
et al. 2006b; Teena et al. 2012; Yu et al. 2015). The latter 
is primarily due to the system’s high number of degrees 
of freedom, and random factors, regulating the environ-
ment system. Theoretically, it is feasible to evaluate sys-
tem reliability by utilizing enough measurement data or 
doing extensive direct MC (Monte Carlo) simulations 
(Cheng et  al. 2003; Ewans 2014; Heffernan and Tawn 

(2)G(x, �,β , θ) = 1− qe−�W (x−θ)β

2004; Janssen 2000; Jensen and Capul 2006; Kallos 1997; 
Kim and Lee 2015; Li et  al 2013; Zhao and Ono 1999). 
However, both computational and experimental expenses 
may be prohibitive for most complex dynamic systems. 
As a consequence of the latter argument, authors have 
devised a special reliability method, suitable for high-
dimensional environmental systems, aiming at reducing 
both measurement and computation costs (Avvari et al., 
2017; Daue & Kunzmann, 2008; Sherrit et al., 2014; Soma 
& Pasquale, 2013; Stanton et al., 2012; Wilkie et al., 2002; 
Williams et al., 2004).

Typically, it is believed that wind speeds behave in a stable 
and homogeneous ergodic random process, within a short-
term period of time (Cheng et  al., 2022; Gaidai & Xing, 
2022a, b; Gaidai et al., 2022b, c, d, e, f, g, h; Xu et al., 2022). 
Reliability study is an important part of design, when 
analyzing MDOF (multi-degree of freedom) structures that 
are susceptible to complex environmental loads 
(Balakrishna et  al., 2022; Gaidai & Xing, 2022a, c; Gaidai 
et al., 2022c, d, e, g, h, i, j, k). An alternative is to consider a 
system process to be reliant on a number of external 
random variables, whose temporal variation may be 
represented, as a separate ergodic process (Choi et al., 2007; 
Ditlevsen & Madsen, 1996; Gaidai & Xing, 2022b, c, 2023; 
Gaidai et  al., 2023c, d, e, f; He et  al., 2022; Madsen et  al., 
1986; Melchers, 1999; Rice, 1944; Thoft-Christensen & 
Murotsu, 1986; Wang et al., 2022; Zhao et al., 2019; Zhou 
et  al., 2019). Utilizing classic theoretical reliability 
approaches to assess a system’s reliability is not an easy and 
straightforward task. Typically, it is assumed that wind 
speeds represent an ergodic random process (quasi-
stationary and homogenous) (Cheng et al., 2022; Gaidai & 
Xing, 2022a, b; Gaidai et al., 2022b, c, d, e, f, g, h; Xu et al., 
2022). Think of an MDOF (multi-degree of freedom) EH 
system, subjected to in  situ environmental loads 
(Balakrishna et  al., 2022; Gaidai & Xing, 2022a, c; Gaidai 
et al., 2022c, d, e, g, h, i, j, k). Another option is to view the 
EH system process as being dependent on external 
(environmental) factors, whose temporal fluctuation may be 
modeled as ergodic processes. MDOF EH dynamic system 
being represented through its critical/key components 
(X(t),Y (t),Z(t), . . . ) that have been measured/simulated 
over a representative time span (0,T ) . One-dimensional 
system components global maxima over entire time lapse 
(0,T ) being denoted here as Xmax

T = max
0≤t≤T

X(t) , 

Y
max

T
= max

0≤t≤T

Y (t) , Z
max

T
= max

0≤t≤T

Z(t), . . . . By representative 

time lapse T one means large enough value of T , with 
respect to dynamic system’s auto-correlation as well as 
relaxation time scales. Let X1, . . . ,XNX be temporally conse-
quent EH system component’s X(t) local maxima, recorded 

Table 2  Wind speed ranges (below 7 m/s)

Wind speeds ranges m/s Regime names

0–1 Calm

1–2 Light air

2–3 Light-breeze

3–4 Gentle-breeze

4–5 Moderate-breeze

5–6 Fresh-breeze

6–7 Strong-breeze
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at discrete, monotonously increasing time instants 
tX1 < · · · < tXNX

 within (0,T ) Analogous definition to follow 
for other MDOF EH system’s components Y (t),Z(t), . . . 
with Y1, . . . ,YNY ; Z1, . . . ,ZNZ etc. For simplicity, all EH sys-
tem’s components local and hence global maxima are 
assumed to be positive. The target is now to accurately 
estimate the system’s failure/hazard/damage probability, 
namely probability/risk of exceedance

with

being target non-exceedance (survival) system 
probability, given critical values of EH system’s compo-
nents ηX , ηY  , ηZ,…; with ∪ being logical unity operation 
«or»; and pXmax

T ,Ymax
T ,Zmax

T ,... being joint PDF of EH system 
component’s global maxima over entire observational 
time-span (0,T ) . In practice, however, it is not feasible to 
assess directly the latter joint PDF pXmax

T ,Ymax
T ,Zmax

T ,... due to 
the system’s high dimensionality, and underlying dataset 
limitations. More specifically, when either component 
X(t) exceeds ηX , or Y (t) exceeds ηY  , or Z(t) exceeds ηZ , 
etc., EH system is regarded as immediately failed. Fixed 
hazard/failure levels ηX , ηY  , ηZ ,… being individual for 
each one-dimensional system’s component. 
Xmax
NX

= max {Xj ; j = 1, . . . ,NX } = Xmax
T  , Y

max

NY
=

max {Yj ; j = 1, . . . ,NY } = Ymax

T
 , Zmax

Nz
= max {Zj ; j = 1,

. . . ,NZ} = Z
max

T
 , etc. Now, let us sort EH dynamic system 

component’s local maxima time instants 
[
t
X
1
< · · · < t

X
NX

;

t
Y
1
< · · · < t

Y
NY

; t
Z

1
< · · · < t

Z

NZ

]
 in a monotonously non-

decreasing order into one single merged time vector 

(3)
1− P = Prob

(
Xmax
T > ηX ∪ Ymax

T > ηY ∪ Zmax
T > ηZ ∪ . . .

)

(4)P =

∫ ∫ ∫ (ηX ,ηY ,ηZ ,...)

(0,0,0,,...)
pXmax

T ,Ymax
T ,Zmax

T ,...

(
xmax
T , ymax

T , zmax
T , . . .

)
dxmax

T dymax
T dzmax

T . . .

t1 ≤ · · · ≤ tN . Note that tN = max {tXNX
, tYNY

, tZNZ
, . . . } , 

N ≤ NX + NY + NZ + . . . . In this case, tj represents 
occurrences times of EH component local maxima of one 
of MDOF system components, namely either X(t) or 
Y (t) , or Z(t) etc. Next, we screen continuously, concur-
rently for the EH system component’s local maxima, 
within EH one-dimensional system components, record-
ing their exceedances of MDOF limit/hazard/risk vector 
(ηX , ηY , ηZ , ...) by any of EH system’s components 
X ,Y ,Z, . . . Local one-dimensional EH system compo-
nent maxima have been merged now into 1 temporal 
non-decreasing system vector 

−→
R = (R1,R2, . . . ,RN ) in 

accordance with the merged temporal vector 
t1 ≤ · · · ≤ tN . Hence, EH component’s local maxima Rj is 
in fact actually encountered the EH system component’s 
local maxima, corresponding to either X(t) or Y (t) , or 
Z(t) and so on. Finally, a unified limit/hazard system 
vector (η1, . . . , ηN ) is introduced, with each EH system 
component ηj being either ηX , ηY  or ηZ and so on, 
depending which of X(t) or Y (t) , or Z(t) etc. 
corresponding to the current EH component’s local 
maxima, having a running index j . Scaling parameter 
0 < � ≤ 1 is being introduced to simultaneously decrease 
limit/hazard values for all EH dynamic system 
components, namely new MDOF hazard/limit vector (
η�X , η

�
Y , η

�
z , ...

)
 with η�X ≡ �·ηX , ≡ �·ηY  , η�z ≡ �·ηZ ,… being 

now introduced. A unified limit vector 
(
η�1, . . . , η

�
N

)
 being 

introduced with each component η�j  being either η�X , η�Y  
or η�z etc. The latter identifies system’s survival probabil-
ity P(�) as afunction of parameter � , note that P ≡ P(1) 
from Eq.  (1). Non-exceedance (survival) probability/risk 
P(�) may be now assessed

(5)

P(�) = Prob
{
RN ≤ η�N , . . . ,R1 ≤ η�1

}
=

= Prob
{
RN ≤ η�N | RN−1 ≤ η�N−1, . . . ,R1 ≤ η�1

}
· Prob

{
RN−1 ≤ η�N−1, . . . ,R1 ≤ η�1

}

=

N∏

j=2

Prob
{
Rj ≤ η�j | Rj−1 ≤ η�1j−, . . . ,R1 ≤ η�1

}
· Prob

(
R1 ≤ η�1

)
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The idea behind this series of conditioning-based 
approximations is explained in detail in Gaspar et  al. 
(2012), Gaidai et al. (2023g), Naess et al. (2009), Xu et al. 
(2018). Dependence between neighboring Rj is not always 
negligible, hence following 1-step (conditioning number 
k = 1 memory approximation being introduced

for 2 ≤ j ≤ N  (conditioning number k = 2 ). 
Approximation, introduced by Eq.  (6) may be now 
further expressed as

with 3 ≤ j ≤ N  (conditioning number k = 3 ), etc. 
(Balakrishna et  al., 2022; Gaidai et  al., 2022g, 2022h, 
2022i, 2022j, 2022k). The idea is to monitor each 
independent damage/hazard/failure, that happened 
locally first in time, thus avoiding (de-clustering) 
cascading inter-correlated local exceedances. Since the 
MDOF EH system has been assumed ergodic and hence 
stationary, probability (system failure/damage risk) 
pk(�) := Prob

{
Rj > η�j |Rj−1≤ η�j−1

,Rj−k+1 ≤ η�j−k+1

}
 for 

j ≥ k is independent of j and only dependent on the con-
ditioning number k . Hence, the non-exceedance proba-
bility may be approximated similarly to the conditional 
exceedance rate method

Note that Eq.  (8) follows from Eq.  (3) if neglecting 
Prob(R1 ≤ η�1) ≈ 1 , as design failure/damage probability 
being of a small order of magnitude, with N ≫ k . Note 
that Eq.  (8) is similar to a well-known mean up-crossing 
rate equation for the hazard/failure probability/risk (prob-
ability of exceedance) (Gaidai & Xing, 2022a, b; Madsen 
et al., 1986; Rice, 1944). There is convergence with respect 
to the conditioning parameter k

Note that Eq.  (9) for k = 1 turns into a well-known 
non-exceedance (survival) probability relationship with a 
corresponding mean up-crossing rate function

(6)Prob{Rj ≤ η�j |Rj−1 ≤ η�j−1, . . . ,R1 ≤ η�1} ≈ Prob{Rj ≤ η�j |Rj−1 ≤ η�j−1}

(7)
Prob

{
Rj ≤ η�j |Rj−1 ≤ η�j−1, . . . ,R1 ≤ η�1

}
≈

≈ Prob
{
Rj ≤ η�j |Rj−1 ≤ η�j−1,Rj−2 ≤ η�j−2

}

(8)Pk(�) ≈ exp (−N · pk(�)), k ≥ 1.

(9)P = lim
k→∞

Pk(1); p(�) = lim
k→∞

pk(�)

with ν+(�) denoting mean-up-crossing rate of the risk 
level � for the above assembled non-dimensional vector 

R(t) , assembled from scaled MDOF EH system compo-
nents 

(
X
ηX

, Y
ηY

, Z
ηZ
, . . .

)
 . The mean-up-crossing rate is 

given by Rice’s formula, given in Eq. (10) with pRṘ being 
joint PDF for 

(
R, Ṙ

)
 with Ṙ being time derivative R′(t) 

(Rice, 1944). Equation (10) relies on the so-called Poisson 
assumption, implying that upcrossing events of critical/
high � levels (in this study � ≥ 1 ) may be assumed to be 
nearly independent. For narrow band EH systems, dis-
playing cascading/clustering hazards/failures in various 
system components, temporally successive components 
local maxima (caused by inherent inter-dependency 
between EH system extreme events) manifest themselves 
through highly correlated local maxima clusters, stored 
within assembled EH system vector 

−→
R = (R1,R2, . . . ,RN ) . 

The stationarity assumption was applied in the examples 
above, but the suggested method may also be used to 
handle nonstationary cases. Given the in situ scatter dia-
gram having m = 1, ..,M environmental states, each indi-
vidual short-term environmental state has individual 
probability qm , so that 

∑M
m=1 qm = 1 . Let one introduce a 

long-term statistical equation

with pk(�,m) being same function, as in Eq.  (7), corre-
sponding to a specific short-term environmental state, 
with number m . Note that within recent years authors 
have successfully verified the recommended approach’s 
correctness for a wide range of 1-dimensional dynamic 
systems (Gaidai & Xing, 2022b). Next, following the 
extrapolation Naess–Gaidai (NG) technique is intro-
duced, being asymptotically of Gumbel distribution type, 
and serving as the foundation for failure/hazard PDF-
tail extrapolation. The latter strategy is predicated on 
the notion that a class of parametric functions required 
for extrapolation in general case may be described in a 
manner akin to that of the relationship between Gum-
bel distribution and Generalized Extreme Value (GEV) 
distribution family. Extreme values that may be detected 

(10)

P(�) ≈ exp (−ν+(�)T ); ν+(�) =

∞∫

0

ζpRṘ(�, ζ )dζ

(11)pk(�) ≡

M∑

m=1

pk(�,m)qm
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from sampled time series do not always follow asymp-
totic distributions, or to say the least, it is often quite 
challenging to establish that they are indeed asymptotic. 
The latter suggests that it is important to extend focus 
to a range of sub-asymptotic levels. Hence, it is sug-
gested that the NG class of sub-asymptotic distributions 
be appended to the asymptotic Gumbel functional class. 
The above introduced pk(�) as functions being regular in 
PDF tail, specifically for values of parameter � approach-
ing, and exceeding 1 . For � ≥ �0 , PDF tail behaves simi-
larly to exp

{
−(a�+ b)c + d

}
 with four parameters 

a, b, c, d being suitably fitted 4 constants, for suitable PDF 
tail cut-on �0 value

By plotting ln
{
ln(pk(�))− dk

}
 versus ln(ak�+ bk) , 

often nearly linear PDF tail behavior being observed. It is 
useful to do the optimization on the logarithmic level by 
minimizing the following error function F with respect to 
4 parameters ak , bk , ck , dk

with �1 being suitable PDF tail cutoff value, namely the 
largest �-parameter value, where the confidence interval 
width is still acceptable. Optimal values of four param-
eters ak , bk , ck , dk may also be determined using the 
sequential quadratic programming (SQP) method incor-
porated in the NAG Numerical Library (Numerical Algo-
rithms Group, 2010). Weight function ω can be defined as 

(12)pk(�) ≈ exp
{
−(ak�+ bk)

ck + dk
}
, � ≥ �0

(13)
F(ak , bk , ck , dk) ==

�1∫

�0

ω(�)
{
ln(pk(�))− dk + (ak�+ bk)

ck
}2

d�, � ≥ �0

ω(�) =
{
lnCI+(�)− lnCI−(�)

}−2 with 
(
CI−(�), CI+(�)

)
 

being 95% confidence interval (CI), empirically estimated 
from simulated/measured underlying dataset (Gaidai & 
Xing, 2022a, b; Gaidai et al., 2022b, c, d, e). For levels of 
� approaching 1 , the approximate limits of a p-% confi-
dence interval (CI) of pk(�) can be given as follows

with f (p) being estimated from an inverse normal distri-
bution, for example f (90%) = 1.65 , f (95%) = 1.96 with 
N  being total number of EH system component’s local 
maxima, constituting system vector 

−→
R .

The purpose of this discussion now is to address 
extrapolation in light of the data quality that underlies 
it, namely the raw PDF, CDF, and mean upcrossing rate 
functions tails ( � > �cut on ) inherent anomalies. Since the 
mean upcrossing rate function tail has been created, by 
integrating the PDF tail, it is now evident that the PDF 

tail will be less continuous than the CDF and mean 
upcrossing rate function tails. In order to combat raw tail 
discontinuities, as seen in Fig. 2a), the authors first pro-
pose integrating mean upcrossing rate functions tail in 
this study.

(14)CI±(�) = pk(�)

(
1±

f (p)√
(N − k + 1)pk(�)

)
.

Fig. 2  a Integration to combat raw tail roughness. b “Fat tail” transformation, star marks �-value where NG extrapolation began. Negative decimal 
log probability scale on the y-axis
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As a transition from a convex to a concave tail shape, 
we secondly propose a logarithmic transformation 
of the integrated mean upcrossing rate functions tail 
to the so-called “fat tail” condition. More specifically, ∫
ν+(�) → ln

(
1+

∫
ν+(�)

)
 transformation has been sug-

gested, Fig. 2b).
The recommended approach and the NG extrapolation 

(modified four-parameter Weibull) method are compared 
in Fig.  3, with a star designating the start of extrapola-
tion. By retaining only each 100th point from the original 
dataset, a shorter dataset was created by 100-fold thin-
ning the original dataset. By comparing anticipated out-
comes based on the shorter dataset with findings based 
on the entire dataset, the recommended technique was 
validated in this manner. The modified Weibull extrapo-
lation predicted a convex tail rather than a concave one, 
as seen in Fig.  3, but the recommended technique was 
performed quite accurately.

Results
When the wind speeds reach greater levels, EH efficiency 
will significantly fall, hence piezoelectric energy harvest-
ers always try to scavenge energy from low-wind speeds. 
As a result, a stopper may be built onto the prototype, to 
prevent damage in high wind conditions since the stop-
per will dampen the considerable vibration amplitude, 
brought on by relatively high wind speeds. Keep in mind 
that the optimal wind speed range for EH operations is 
below 7  m/s. Using measured voltage time-series, the 
total horizontal aerodynamic force acting on the EH bluff 
body time series has been calculated, using the following 
equation

containing following experimental setup parameters: 
Cp = 30.5×10

−9 F; M = 4.2×10−3 kg ; C = 5.3×10
−3

N/(m/s) ; 
K = 9.7 N/s ; θ = 5.0× 10−3 N/V , Table  1. In this sec-
tion, bivariate random process Z(t) = (X(t),Y (t)) has 
been studied, consisting of voltage and corresponding 
total force processes X(t),Y (t) , with 1st component 
(voltage X = V  ) being measured and 2nd component 
(force Y = F  ) being computed synchronously, over a 
certain representative time lapse (0,T ) . Let one assume 
that samples (X1,Y1), . . . , (XN ,YN ) have been taken at N 
equidistant discrete temporal instants t1, . . . , tN within 
the measurement time lapse (0,T ). This study utilizes 
bivariate joint cumulative distribution function (CDF) 
P(ξ , η) := Prob

(
X̂N ≤ ξ , ŶN ≤ η

)
 of the 2D vector 

(
X̂N , ŶN

)
 , with components 

X̂N = max
{
Xj; j = 1, . . . ,N

}
 , and 

ŶN = max
{
Yj; j = 1, . . . ,N

}
 . In this paper ξ and η being 

recorded voltage and corresponding total force values 
respectively at the same in-situ location with the same 
EH device, measured synchronously.

Wind speeds PDF frequently follows Weibull dis-
tribution. To describe how galloping energy harvest-
ers react to in  situ wind speed data (Choi et  al., 2007; 
Gaidai & Xing 2022c; Melchers, 1999; Thoft-Christensen 
& Murotsu, 1986; Wang et  al., 2022; Zhou et  al., 2019), 
Weibull distribution is frequently used. For EH, Fig. 4a) 
presents the correlation between measured voltage, and 
the associated total horizontal EH force. Figure  4 and 
Eq.  (1) show that due to a small order of magnitude of 
Cp

θ
 , horizontal force exhibits the significant linear correla-

tion with its underlying voltage. However, nonlinear con-
nection predominated in the tail of the bivariate extreme 
distribution, Fig. 4a), and Eq. (13) due to higher values of 
V̇  , V̈  . It has been evident that the latter occurrence needs 
to be accounted for in non-linear statistical analysis of 
PDF tails. Experimentally measured voltage and corre-
sponding horizontal force were set as 2 relevant EH sys-
tem components (dimensions) X ,Y  thus constituting an 
example of two-dimensional (2D) dynamic system. Meas-
ured maxima for each system component have been used 
as one-dimensional extreme threshold values ηX , ηY  . In 
order to unify both measured time series X ,Y  (EH volt-
age and horizontal force in this case) following scaling 
was performed

(15)F =
Cp

θ

(
MV̈ + CV̇ + KV

)
+ θV

(16)X →
X

ηX
,Y →

Y

ηY

Fig. 3  Comparison of the suggested method versus NG (modified 
Weibull) extrapolation. Negative decimal log probability scale 
on the y-axis
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with both system components becoming now non-dimen-
sional, and having the same hazard/failure limit equal to 
1. While maintaining temporal non-decreasing order, all 
EH system components’ local maxima from 2 observed 
time series have been combined into 1 new (synthetic) 
time series: 

−→
R = (max{X1,Y1}, . . . , max{XN ,YN }) with 

each local maxima set max
{
Xj ,Yj

}
 being ordered within 

non-decreasing times, at which these local maxima of 
dynamic EH system occurred. An example of a non-
dimensional constructed vector 

−→
R  is shown in Fig.  4b), 

comprised EH system components local maxima for volt-
age and corresponding horizontal force, that are being 
selected as EH system two components. Extrapolation 
of hazard/failure PDF tail towards 1-year return period 

has been done. Vector 
−→
R  is composed of entirely distinct 

system components, with different physical dimensions, 
it should be noted that this vector itself has no particular 
physical significance (Gaidai & Xing, 2023; Gaidai et al., 
2023c, d, e, f, g, h; Gaspar et al., 2012; Naess et al., 2009; 
Xu et  al., 2018). Index j is the running index of system 
components local maxima that were recorded in a non-
decreasing temporal sequence (Gaidai et al., 2023i, j, k, l; 
Liu et al., 2023; Sun et al., 2023; Yakimov et al., 2023).

Extrapolation from Eq.  (9) is shown in Fig.  5 in the 
direction of a hazard/failure state with a 1-year return 
period, given interest return period, and considerably 
beyond, � = 0.3 cut-on value has been used. According 
to Eq. (12), dotted lines represent extrapolated 95% CIs. 
According to Eq. (8) p(�) is directly related to the target 
hazard/failure probability 1− P from Eq.  (3). Hence, in 
agreement with Eq. (8) system hazard/failure probability 
1− P ≈ 1− Pk(1) may be assessed. Note that in Eq. (7) N  
corresponds to the total number of local maxima within 
the unified EH system vector 

−→
R  . Conditioning parameter 

k = 2 was found to be sufficient due to the occurrence 
of convergence with respect to k , see Eq. (8). Advocated 
methodology can treat energy system’s multidimension-
ality, performing accurate extrapolation based only on a 
limited underlying dataset, utilizing measured datasets 
quite effectively (Gaidai et al., 2023g, 2023h, 2023i, 2023j, 
2023k; Gaspar et  al., 2012; Liu et  al., 2023; Naess et  al., 
2009; Sun et al., 2023; Xu et al., 2018; Gaidai et al., 2022a).

Conclusions
Traditional reliability methods dealing with system-
recorded time series do not always have the advantage 
of efficiently handling highly dimensional systems with 

Fig. 4  a measured GPEH voltage, versus corresponding total horizontal force. b scaled non-dimensional assembled system vector 
−→
R

Fig. 5  Extrapolation of pk(�) towards critical levels, corresponding 
to 1-year return period (indicated by star), and beyond. Extrapolated 
95% Confidence Interval (CI), indicated by dotted lines
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nonlinear cross-correlations between different system 
components. The main advantage of the advocated 
technique is its ability to examine the reliability of high 
dimensional non-linear dynamic systems.

This study analyzed energy harvester’s dynamic sys-
tem behavior, under in  situ environmental settings. The 
novel system reliability technique has been used to assess 
the likelihood of device damage, given the return period 
of interest. The theoretical rationale of the proposed 
approach has been discussed in detail. The complexity 
and high dimensionality of dynamic systems make it nec-
essary to develop novel, accurate, yet robust techniques 
that can handle available underlying datasets, making the 
best use of it. Despite the fact that using direct measure-
ment or Monte Carlo simulation to analyze the reliability 
of dynamic systems is appealing, it is not always afford-
able. This study’s methodology has already been shown 
successful, when used with a number of simulation mod-
els, but only for 1-dimensional system responses. Overall, 
quite accurate forecasts have been made. The main goal 
of this work was to develop a general-purpose, trust-
worthy, yet user-friendly multi-dimensional reliability 
methodology.

As seen, the suggested method produced a fairly 
narrow confidence interval. The suggested method might 
therefore be helpful for a variety of nonlinear dynamic 
systems reliability studies. This study demonstrates how 
the advocated methodology may assist designers in the 
accurate assessment of system damage or failure risks. To 
summarize pros and cons of the advocated methodology:

•	 Benefits of the proposed structural reliability tech-
nique compared with traditional methods lie within 
the ability of novel methods to tackle high-dimen-
sional energy harvesting systems.

•	 Limitations of the advocated methodology lie within 
the assumption of the system’s stationarity. In case 
when underlying trend is present, it should be 
identified first.
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