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Abstract 

Many developing countries, particularly in Africa and Asia, still widely use traditional cooking methods that rely 
on solid fuels such as wood and charcoal. These inefficient and polluting cooking practices have severe health 
impacts due to household air pollution, and they contribute to environmental degradation through deforestation 
and black carbon emissions. This has driven growing interest in cleaner and more sustainable cooking alterna‑
tives such as electric cooking (e‑cooking), improved biomass cookstoves, biogas systems, and modern fuel stoves 
that can reduce emissions and fuel consumption while providing a safer cooking experience. E‑cooking has emerged 
as a promising option to traditional cooking methods due to sustainability, health benefits, energy efficiency, conveni‑
ence, safety, and potential for grid integration, making it a promising alternative to traditional cooking methods. This 
study followed the PRISMA guidelines for systematic reviews to assess the existing literature on e‑cooking from 1993 
to 2023. In addition, the biblioshiny package in R software was used to perform bibliometric analysis to identify key 
trends and evolutions. The results indicate that the United Kingdom, the United States, Japan, Australia, and China 
are the top five countries leading in e‑cooking research. The study identified promising areas for future research, such 
as optimising solar e‑cookers using artificial intelligence techniques, integrating internet of things and automation 
technologies in e‑cookers, integrating e‑cooking appliances into smart grid systems, examining effective behavioural 
change interventions, and exploring innovative business models. The study findings highlight the need for interdis‑
ciplinary collaboration among researchers, engineers, social scientists, and policymakers to address the technical, 
economic, socio‑cultural, and environmental factors influencing the transition to e‑cooking.

Keywords Electric cooking, E‑cooking, Clean cooking, Electricity, Sustainable development, Renewable energy, 
Bibliometric analysis, PRISMA

Introduction
Access to affordable, reliable, sustainable, and mod-
ern energy is crucial for achieving many of the United 
Nations’ Sustainable Development Goals (SDGs) (Casati 

et  al., 2023; D. Li et  al., 2023; Pan et  al., 2023). Energy 
poverty remains a harsh reality for millions worldwide, 
with around 733 million people lacking access to electric-
ity and nearly 2.4 billion relying on inefficient and pol-
luting cooking fuels and technologies, according to 2021 
estimates (The World Bank, 2022).

The situation is particularly dire in sub-Saharan Africa 
(Robin & Ehimen, 2024), where over 568 million peo-
ple lack access to electricity and nearly 923 million lack 
access to clean cooking fuels and technologies (IEA, 
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2023). Only a small minority of African nations have 
established goals to provide universal access to electric-
ity for their populations by the year 2030. While an addi-
tional 45% of African countries have also set targets for 
increasing electricity access, these targets fall short of 
the more ambitious objectives outlined under the United 
Nations’ SDG 7 (IEA, 2023).

The use of solid fuels such as charcoal, firewood, dung, 
and coal for cooking remains widespread, particularly 
in developing regions (Aemro et  al., 2021; Benti et  al., 
2021; Odoi-Yorke et  al., 2022). While affordable, these 
traditional cooking methods have severe environmental 
and health consequences (Qiu et  al., 2023). Inefficient 
combustion produces high levels of household air pol-
lution with fine particulate matter, carbon monoxide, 
and other toxic pollutants (Ajieh et  al., 2023; M. U. Ali 
et  al., 2021a, 2021b; Anwar et  al., 2021). According to 
the WHO (2023), household air pollution accounted for 
3.2 million premature deaths globally in 2020, including 
over 237,000 children under 5  years. However, combin-
ing household air and outdoor air pollution contributes 
to 6.7 million premature deaths annually (WHO, 2023). 
Women and children bear a disproportionate burden as 
they tend to have higher exposure levels from household 
chores involving cooking and fuel collection (Geddafa 
et al., 2023).

Several cooking methods and fuels are used world-
wide, including liquefied petroleum gas (LPG), biogas, 
and improved biomass cookstoves. LPG is a popular fuel 
for cooking, particularly in urban areas, as it is relatively 
clean-burning and efficient (Shupler et al., 2021). None-
theless, it is a non-renewable fossil fuel, and its availabil-
ity and affordability can be challenging in certain regions 
(Sidi Habib & Torii, 2024). Biogas, produced from the 
anaerobic digestion of organic matter, is a renewable and 
clean-burning fuel. However, its adoption has been lim-
ited due to the need for appropriate infrastructure and 
feedstock availability (Muvhiiwa et  al., 2017). Improved 
biomass cookstoves, which are designed to burn solid 
fuels such as wood or charcoal more efficiently and with 
reduced emissions, have been promoted as a cleaner 
alternative to traditional cookstoves (Manoj Kumar et al., 
2013; Mehetre et al., 2017). Nevertheless, solid fuel har-
vesting contributes to outdoor air pollution, deforesta-
tion, forest degradation, and climate change (Jagger & 
Kittner, 2017). In addition, the energy-inefficient burn-
ing of biomass releases black carbon, methane, and car-
bon dioxide, which are critical drivers of global warming 
(Lohri et al., 2016). Unsustainable firewood and charcoal 
production degrade forest ecosystems, diminish biodi-
versity, and exacerbate soil erosion. Therefore, transi-
tioning to clean, modern cooking fuels and technologies 
is critical to protecting human health, mitigating climate 

impacts, and promoting environmental sustainability, 
especially in resource-constrained regions disproportion-
ately reliant on solid fuels.

Electric cooking (e-cooking) can potentially improve 
the quality of life for people who cook using biomass 
by improving health, eradicating harmful emissions, 
and removing the need to collect fuelwood, thus free-
ing up time for other activities (Clements et  al., 2020; 
Gelchu et  al., 2023). E-cooking, through technologies 
such as hotplates, electric pressure cookers, rice cook-
ers, and induction stoves, presents a promising solution 
to addressing indoor and outdoor air pollution (Kashyap 
et  al., 2023). When coupled with renewable energy 
sources like solar photovoltaics, e-cooking can provide 
clean, sustainable alternatives to traditional biomass and 
fossil fuel-based cooking methods that cause indoor air 
pollution and drive deforestation.

Several review papers on clean cooking exist in the 
literature. However, review papers related directly to 
e-cooking are limited. In view of this, some of the review 
papers related to e-cooking are presented. For example, 
Kashyap et  al., (2023) comprehensively reviewed clean 
and energy-efficient cooking technologies, focussing 
on solar, electric, and hybrid cookstoves. In addition, 
Lukuyu and Taneja (2023) explored the potential of pro-
moting e-cooking technologies to stimulate electricity 
demand in Sub-Saharan Africa. Likewise, Kizilcec et al., 
(2022) thoroughly reviewed factors influencing the adop-
tion and obstacles to the uptake of LPG, solar home sys-
tems, and e-cooking in Sub-Saharan Africa. Similarly, 
Leary et al., (2021) reviewed the challenges and opportu-
nities in the emerging field of e-cooking from a consumer 
perspective. Yangka and Diesendorf (2016) quantified the 
advantages of scaling up e-cooking within the residential 
sector of Bhutan. Brown et  al., (2017) reviewed obsta-
cles that could impede the expansion of battery-pow-
ered e-cooking technology. Another study by Brown and 
Leary (2015) reviewed the behavioural change challenges 
of the e-cooking concept.

Afrane et  al., (2022) applied bibliometric analysis to 
synthesise global research on clean cooking from 1990 
to 2020. The authors revealed that LPG, biogas, and 
electricity are the three clean cooking fuels studied the 
most across various regions. Aramesh et al., (2019) com-
prehensively reviewed the advancements in solar cook-
ing technology, highlighting various designs and their 
performance. The study recommended that, to advance 
solar cooker technologies, additional research and 
experimentation are required to identify the most effec-
tive configuration that is both cost-effective and socially 
acceptable. Gill-Wiehl et  al., (2021) analysed the lit-
erature on affordability as a barrier to the adoption and 
consistent use of clean cooking stoves and fuels. They 
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found that affordability metrics for clean cooking need 
to be rethought to account for the uncertain and irregu-
lar income streams of low-income households, the per-
sistence of fuel stacking, and essential non-discretionary 
expenses such as food and water. Wright et  al., (2020) 
examined the current technologies and systems for cook-
ing food, particularly within low-income communities.

The studies above indicate limited research summa-
rising the trends, advancements, and future outlook of 
e-cooking for sustainable development. This paper aims 
to bridge this gap by conducting a comprehensive sys-
tematic review combined with a bibliometric analysis to 
identify critical patterns and themes and uncover poten-
tial research directions in this growing field. The novelty 
of this study lies in its rigorous mixed-methods approach, 
combining bibliometric analysis to reveal performance 
metrics, collaborative patterns, trending topics, and intel-
lectual clusters with a systematic review to qualitatively 
synthesise findings on the status, challenges, opportuni-
ties, and pathways for upscaling e-cooking. To the best of 
the author’s knowledge, such an all-encompassing inquiry 
into e-cooking in the context of sustainable development 
does not exist. The study’s main objectives are to (1) eval-
uate global research productivity and geographic con-
tributions, (2) detect conceptual, intellectual, and social 
structures underlying the literature body, (3) synthesise 
technological progress, and (4) identify critical knowl-
edge gaps to guide future research. The author believes 
that study findings can inform policy, investment, and 

programmatic priorities to harness e-cooking as an ena-
bler of affordable, reliable, and sustainable energy for 
all. Importantly, this study will provide a comprehensive 
knowledge base to guide researchers in understanding 
critical gaps and opportunities for future investigation in 
this emerging domain.

Research methodology
Figure  1 displays the flowchart of the study approach 
adopted. The Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) framework was 
followed to select papers for this review. The PRISMA 
framework ensures a systematic and reproducible 
approach to literature identification, screening, eligibil-
ity assessment, and data extraction (Odoi-Yorke et  al., 
2023; Page et al., 2021; Sohrabi et al., 2021). The system-
atic literature search from the Scopus database focussed 
on papers on e-cooking published from 1993 to 2023 
to address the research objectives. The study employed 
pertinent search term combinations, including {elec-
tric cooking} OR {e-cooking} OR {electric cooker} OR 
{e-cooker} OR {electric-cook} OR {e-cook} to filter the 
Scopus database. This study selected the Scopus database 
over alternatives such as Web of Science and PubMed 
because it contained many pertinent publications related 
to the research topic. As a broad abstracting and indexing 
database spanning numerous disciplines, Scopus offers 
accessibility to many international journals, ensuring 
comprehensive global coverage of research findings from 

Fig. 1 The flowchart for the PRISMA approach
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diverse geographical areas. Moreover, papers in the Web 
of Science are indexed in Scopus.

As seen in Fig. 1, the initial search, which yielded 136 
documents, was screened based on predefined inclu-
sion (peer-reviewed articles, book chapters, and confer-
ence papers) and exclusion (non-English papers, erratum, 
Editorial, and notes) criteria to obtain 103 documents 
(which comprise articles (65), book chapters (1), confer-
ence papers (31), and reviews (6)). Afterwards, informa-
tion on journals, publication dates, author institutions, 
countries, sources, abstracts, citations, keywords, and 
bibliographies were downloaded in a CSV file on March 
11, 2024, to perform analysis. After reviewing abstracts 
and titles, 67 documents were identified as relevant to 
e-cooking for this review. The eligible studies’ full-text 
documents were systematically examined to identify 
emerging trends, advancements, and future research 
directions. This was done by reviewing each study to 
document research objectives, methodologies, key find-
ings, and recommendations. It is worth mentioning that 
two independent researchers volunteered in the literature 
screening and data extraction stages to ensure the quality 
and reliability of the review process. Any disagreements 
or discrepancies were resolved through discussion and 
consensus. In addition, the risk of bias in individual stud-
ies was assessed using appropriate tools or checklists.

The study further performed bibliometric analysis 
using the biblioshiny package in R software, to provide 
insights into various aspects of the literature, such as 
publication trends over time, thematic map, and factorial 

analysis. Bibliometric analysis is a powerful tool for 
quantitatively evaluating scientific literature (Agyekum 
et  al., 2024; Janik et  al., 2020; Odoi-Yorke et  al., 2024). 
These analyses could also help identify research hotspots, 
emerging themes, and potential knowledge gaps in the 
field of e-cooking.

Results and discussion
This section presents and discusses the significance of 
the results. It discusses articles published annually, the-
matic maps, factorial analyses, and findings from papers 
reviewed.

Analysis of articles published annually and top publishing 
countries
Figure 2 displays the number of articles published annu-
ally from 1993 to 2023. It can be observed that the num-
ber of articles published has shown an increasing trend 
over the years, with a more significant rise in recent 
years. As seen during the early years (1993–2009), the 
number of articles published was relatively low, with 
some years having no publications. This could indicate 
that e-cooking was not a major research area during that 
time or that the technology was still in its early stages of 
development. It can be seen that there has been a recent 
surge in articles produced from 2020 to 2023. The most 
notable observation is the substantial increase in arti-
cles published from 2020 onwards, with a peak of 23 
articles in 2021. This publication surge could be attrib-
uted to the development of innovative technologies and 
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the growing emphasis on environmental regulations and 
policies promoting sustainable cooking practices. For 
instance, one notable technology that gained traction 
during this period is the development of efficient induc-
tion cooktops, which utilise electromagnetic induction to 
directly heat cookware, resulting in faster cooking times 
and reduced energy consumption (Snell, 2023; Sridhar, 
2023). In addition, integrating renewable energy sources, 
such as solar PV systems, into e-cooking appliances has 
attracted substantial attention to reduce carbon emis-
sions and promote energy independence (Energy Sector 
Management Assistance Program, 2020; Lecuona-Neu-
mann et  al., 2024). In addition, the implementation of 
environmental regulations, such as the Paris Agreement’s 
goal adopted in 2015 under the United Nations Frame-
work Convention on Climate Change (UNFCCC) to limit 
global temperature rise to well below 2  °C (Ganti et  al., 
2023; Voigt, 2023), and policy initiatives like the United 
Nations’ Sustainable Development Goal 7, which aims to 
ensure access to affordable, reliable, and modern energy 
services (Matenga, 2022; Tucho & Kumsa, 2020), could 
have also sped up the adoption of sustainable cooking 
methods and the creation of clean cooking technologies.

Furthermore, after the peak in 2021, the number of 
articles published in 2022 and 2023 (14 each) remained 
consistently high, suggesting a sustained interest and 
ongoing research efforts in e-cooking. The increasing 
research output could lead to developing and refining 
new e-cooking technologies, making them more efficient, 
user-friendly, and accessible to a wider consumer base.

Figure 3 presents the frequency of articles published 
by different countries or regions. The results indicate 
that the United Kingdom (115 articles), the United 
States (87 articles), and Japan (25 articles) are the top 
three countries in terms of article production. This sug-
gests that these nations have a strong research focus 
and interest in this field, which could be attributed 
to technological advancements, energy policies, and 
environmental concerns. The UK dominance could be 
due to the Modern Energy Cooking Services (MECS) 
programme initiative. The MECS programme, funded 
by UK Aid, drives research and innovation to transi-
tion developing nations in Africa, South Asia, and the 
Indo-Pacific from traditional biomass cooking to mod-
ern, sustainable alternatives such as clean cookstoves 
and e-cooking devices. It partners with organisations 
to conduct studies, pilot projects, and shape policies 
promoting the widespread adoption of these clean 
cooking solutions (Modern Energy Cooking Services, 
2024). Interestingly, several developing countries, such 
as Nepal (15 articles), Tanzania (11 articles), Malawi 
(7 articles), Nigeria (7 articles), Ghana (6 articles), 
Kenya (6 articles), Indonesia (5 articles), and Bangla-
desh (3 articles), have also contributed to the research 
on e-cooking. This could indicate a recognition of the 
potential benefits of e-cooking technologies in address-
ing energy access, sustainability, and environmental 
challenges these nations face.

Fig. 3 Frequency of articles published by different countries
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Study period thematic map, factorial analysis, and trend 
of topics
Figure  4 displays the thematic map. The thematic map 
categorises themes into four quadrants: basic, niche, 
motor, and emerging/declining themes, based on their 
relevance and centrality. The basic themes are char-
acterised by high centrality but low density. The basic 
themes quadrant contains themes that are fundamental 
and highly central to the core topics of e-cooking and 
sustainable development. Words such as “clean cook-
ing,” “e-cooking,” “and nergy access” fall into this category 
because they are essential concepts directly related to 
the main focus area. Similarly, the motor themes possess 
high density and centrality, indicating that they are well-
developed and critically important to the research area. 
The motor quadrant contains highly relevant themes and 
is central to driving progress or innovation in the field. 
For instance, this quadrant includes words such as “life 
cycle assessment” and “e-cooking,” which are associated 
with renewable energy sources such as “off-grid,” “solar 
PV,” and “LCOE,” as they serve as significant drivers or 
enabling factors for sustainable e-cooking solutions. 
Likewise, the niche theme quadrant has high density but 
low centrality. The niche themes quadrant contains more 
specialised or niche-related themes for the broader topic. 
Words such as “fuel stacking,” “perceptions,” and “Tan-
zania” likely represent specific case studies, localised 
contexts, or niche aspects within the broader domain of 

e-cooking and sustainability. Furthermore, the emerg-
ing or declining themes quadrant represents themes that 
either emerge as new areas of interest or decline in rel-
evance over time. The placement of the term “internet of 
things” here suggests that it is either an emerging concept 
or technology with potential implications for e-cooking 
and sustainable development, or it could be a theme that 
is declining in relative importance compared to other 
themes.

Figure  5 shows the results of the factor analysis. The 
figure displays words or terms, their corresponding 
scores or loadings on two dimensions (Dim. 1 and Dim. 
2), and a cluster assignment. The scores or loadings on 
these dimensions indicate each word’s relative impor-
tance or contribution to that particular dimension. The 
results reveal a close clustering of topics such as “energy,” 
“electric cooking,” “sustainable development,” “mini-
grids,” and “energy efficiency,” indicating a strong asso-
ciation or correlation among these concepts. Positioning 
this cluster in the positive quadrant of both dimensions 
indicates a positive relationship with the underlying fac-
tors represented by the axes. Conversely, the clustering 
of topics such as “gas emissions,” “greenhouse gases,” 
“carbon dioxide,” and “energy utilisation” in the negative 
quadrant of both dimensions suggests a negative associa-
tion with the factors represented by the axes. This cluster 
is opposed to the e-cooking and sustainable development 
clusters, implying a potential trade-off or contrasting 

Fig. 4 Thematic map of keywords
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relationship between these concepts. The origin includes 
topics such as “cooking appliances,” “life cycle,” “heating,” 
“cooking,” “indoor air pollution,” and “air pollution,” sug-
gesting a relatively neutral or mixed relationship with the 
underlying factors.

The results suggest that e-cooking and related concepts 
such as mini-grids, energy efficiency, and sustainable 
development are positively associated with the factors 
represented by the figure. In contrast, concepts related 
to greenhouse gas emissions and energy utilisation are 
negatively associated. These findings have important 
implications for promoting sustainable development and 
mitigating environmental impacts. The positive asso-
ciation between e-cooking and sustainable development 
concepts suggests that adopting e-cooking technologies, 
coupled with energy efficiency measures and deploying 
mini-grids or decentralised energy systems, could con-
tribute to sustainable development goals. However, the 
negative association with greenhouse gas emissions and 
energy utilisation highlights the need to carefully con-
sider the energy sources used for e-cooking and the life 
cycle impacts to ensure a net positive environmental 
benefit.

The trend of topics is shown in Fig. 6. The results cover 
many years, from the 1990s to the present (2023). The 
topics seem to evolve, highlighting the changing research 
interests and priorities. In the earlier years (1990s to 
early 2000s), topics such as “nitrogen dioxide,” “air pol-
lution, indoor,” “humans,” and “female/male” were more 
prevalent. These topics suggest a focus on the health and 
environmental impacts of traditional cooking methods, 
mainly indoor air pollution and its effects on human 

populations. Around the late 2000s and early 2010s, top-
ics such as “electricity,” “electricity generation,” “energy 
utilisation,” and “carbon dioxide” started to emerge. This 
shift indicates a growing interest in the energy aspects 
of cooking, particularly electricity use and its impact on 
GHG emissions. In more recent years (2018–2023), top-
ics such as “liquefied petroleum gas,” “energy efficiency,” 
“life cycle,” “mini grids,” “clean cooking,” and “carbon” 
have gained prominence. These topics focus on cleaner 
and more sustainable cooking solutions, energy effi-
ciency, and cooking activities’ overall lifecycle and carbon 
footprint. The presence of “Nepal” as a topic from 2019 to 
2020 suggests that there may have been specific research 
or initiatives related to e-cooking in that country during 
that period.

Advancements in e‑cooking for future research 
directions
This section synthesises findings from relevant studies on 
e-cooking development. It categorises e-cooking devel-
opment into four areas: electric cooking and appliances, 
renewable energy integration and microgrid, socio-eco-
nomic and behavioural aspects, and environmental and 
health impact.

Electric cooking technologies and appliances
The studies in this section highlight the importance of 
developing and evaluating various e-cooking appliances 
and technologies to improve their energy efficiency, 
performance, and user-friendliness. A key area of focus 
is comparing different heating principles such as induc-
tion, resistance, and radiative heating used in electric 

Fig. 5 Factorial analysis of author keywords
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cookstoves. For instance, Rose and Morawicki (2023) 
found induction cooktops and electric pots promising 
options due to their high energy efficiency, particularly 
for boiling water quickly. The authors further revealed 
that induction cooktops excelled at temperature con-
trol during simmering compared to resistance coils. 
However, while electric cookstoves have an end-use 
efficiency of around 80%, their total system efficiency 
suffers from inefficiencies in electricity production and 

transportation (Kashyap et al., 2023). To address this lim-
itation, researchers explored integrating electric cook-
stoves with renewable energy sources like solar power, as 
shown in Figs. 7 and 8. Solar cooking has a higher total 
system efficiency since the end-use efficiency equals the 
total system efficiency (Kashyap et al., 2023). For exam-
ple, improvised solar electric stoves using local materials 
can provide cost-effective solutions that perform simi-
larly to commercial electric cookers (Cristobal, 2021). 

Fig. 6 Trend of research topics

Fig. 7 Solar PV‑induction cooking system with a hot plate (Altouni et al., 2022)  (Reproduced with permission from Elsevier, License number: 
5813551033518)
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Siddiqua et  al., (2016) developed a double-burner solar 
PV-powered electric stove suitable for rural areas. Khan 
and Alam (2020) proposed a cost-effective solution inte-
grating solar PV with the grid and utilising hot water 
energy storage, reducing energy costs by 32% compared 
to grid-connected cooking systems. Altouni et al., (2022) 
investigated the performance of a PV-powered induction 
cooker, achieving energy efficiencies up to 47.6% at spe-
cific times, though cooking times were longer than LPG 
stoves.

Furthermore, another area of focus is pre-heating 
water using thermal energy storage, which can signifi-
cantly reduce the electrical energy required for cooking. 
For instance, Chiloane et al., (2023) found that pre-heat-
ing water from 50  °C to 97.6  °C could reduce electrical 
cooking energy consumption by 12.36% to 27.79% when 
cooking rice. Further innovations include insulated solar 
electric cookers (ISEC) and pressurised solar PV electric 

cookers (PSEC) with phase change materials (PCM) like 
erythritol for energy storage, as shown in Figs. 9 and 10 
(Opoku et al., 2022; Osei et al., 2021). These can enable 
rapid cooking by storing solar energy and even allow 
post-sunset cooking. The ISEC and PSEC technologies 
directly connect a solar panel to an insulated electric 
heater, thoroughly cooking meals while keeping food 
warm after initial heating to reduce firewood use and 
indoor air pollution (Watkins et al., 2017). Simon Prabu 
et  al., (2023) revealed that integrating PCMs like coco-
nut oil into solar cookers can provide energy storage for 
uninterrupted cooking during off-sunshine hours, dem-
onstrating high effectiveness among PCMs tested.

Other approaches include developing standalone solar 
cookers (hotplates) powered by PV energy (Atmane 
et al., 2021), solar electric cookers directly connected to 
solar panels (Mok & Saigal, 2020), and PV-powered elec-
tric stoves for regions with inadequate gas supply (Islam 
et  al., 2014). Accordingly, Ahmed and Khalid (2020) 
developed an Internet of Things (IoT-enabled) electric 
cooker incorporating inductive heating, rotation, tilting, 
and a robotic arm for automated cooking. Katwale et al., 
(2021) designed a smart ugali cooker for domestic cook-
ing applications. The ugali cooker consistently met the 
design goal by cooking 500 g of flour within the expected 
timeframe. Singh and Singh (2019) suggested that inte-
grating off-grid PV systems with low-energy-demand 
electric cookstoves can enhance access to clean cooking 
while simultaneously powering other residential loads. 
However, incorporating certain e-cooking technologies 
like electric pressure cookers with mini-grids in develop-
ing areas requires careful consideration of their power 
demands and efficiency impacts (Zimmerle et al., 2020). 

Fig. 8 Solar electric cooking system (Indiamart, 2024)

Fig. 9 Pressurised solar PV electric cooker using diodes as the heating element (Opoku et al., 2022)  (Reproduced with permission from Elsevier, 
License number: 5813520834372)
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Accurate performance measurement through standard-
ised procedures and appropriate sensor choices is vital 
for assessing and comparing the energy efficiency of dif-
ferent e-cooking appliances to inform consumers and 
drive the adoption of efficient technologies (Beges et al., 
2015).

Renewable energy integration and microgrids 
for e‑cooking
This section explored the integration of e-cooking solu-
tions with renewable energy sources, such as solar PV, 
and their application in microgrid systems. This inte-
gration holds promise for providing clean and efficient 
cooking options while expanding access to electricity in 
off-grid and rural areas. Several researchers have high-
lighted these integrated systems’ potential economic 
viability and cost-competitiveness. For example, Dufo-
López et  al., (2012) found that off-grid PV systems 
with low-demand e-cooking can meet energy needs 
in rural areas at a levelized cost of around 3 cents per 
meal, indicating cost-effectiveness. In addition, Opoku 
et  al., (2023) applied machine learning to use redun-
dant energy obtained from solar PV mini-grid sys-
tems for cooking applications. The study revealed that 
redundant energy can be utilised to meet household 
cooking energy demand through sustainable thermal 
batteries. Among the machine learning models applied 
the K-nearest neighbour regressor demonstrated the 
highest accuracy, with a root mean square error of 
0.148 and a coefficient of determination value of 0.998. 
Similarly, Lombardi et  al., (2019) demonstrated the 
cost-competitiveness of a solar microgrid providing 
integrated access to electricity and e-cooking in Tanza-
nia, with cooking costs ranging from 0.70 to 0.16 USD 
per meal, comparable to or even lower than options 

such as firewood and LPG. However, initial investment 
costs and monthly electricity expenses remain barriers 
to consumer adoption, particularly in rural areas with 
limited incomes (Clements et al., 2020). To address this, 
Clements et  al., (2021) proposed innovative solutions 
like consumption-based payment structures instead of 
flat tariffs, which could increase utility income while 
incentivising households to reduce electricity usage. 
In addition, Eales et al., (2022) recommended demand-
side management (DSM) strategies and smart cooking 
subsidies to accelerate the adoption of e-cooking on 
mini-grids.

Integrating e-cooking appliances into existing mini-
grids presents challenges related to grid stability, volt-
age fluctuations, and limited capacity, especially during 
peak demand periods (Clements et  al., 2020; Kweka 
et  al., 2021; Silwal et  al., 2020). Quetchenbach et  al., 
(2013) demonstrated the effectiveness of GridShare 
technology and educational programmes in reducing 
severe brownouts caused by simultaneous e-cooking 
usage during mealtimes. To mitigate these challenges, 
Keddar et  al., (2020) proposed innovative solutions 
like optimised PV/battery/diesel hybrid mini-grids, 
and Keddar et  al., (2022) recommended smart battery 
management systems that monitor grid state and adjust 
battery charge rates to prevent voltage fluctuations 
and power losses. Furthermore, Keddar et  al., (2021) 
developed a methodology for mini-grid developers to 
assess design readiness and future requirements for 
integrating e-cooking loads, taking into account factors 
such as fuel stacking, utilisation rates, and DSM strat-
egies. Although e-cooking appliances demonstrated 
social acceptability and usefulness (Kweka et al., 2021), 
Dorward et  al., (2022) emphasised the importance of 
understanding consumer charging and discharging 

Fig. 10 Insulated solar electric cooker (Osei et al., 2021) (Published under open access)
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behaviour, as well as novel cooking practices, for accu-
rate power system modelling and expanding e-cooker 
usage, particularly in Sub-Saharan Africa.

Socio‑economic and behavioural aspects of e‑cooking
This category examines the socio-economic and behav-
ioural factors influencing the adoption and acceptance of 
e-cooking solutions. It delves into consumer preferences, 
cultural barriers, affordability concerns, and the potential 
impact of e-cooking on employment and livelihoods.

Affordability and cost‑competitiveness of e‑cooking solutions
Affordability is a major barrier to adopting e-cooking 
technologies, especially in low-income households and 
communities. Several papers reviewed examined the 
affordability and cost-competitiveness of e-cooking solu-
tions compared to traditional fuels such as firewood, 
charcoal, and LPG. Gius et al., (2019) demonstrated that 
direct DC solar electricity with a diode heater could 
make e-cooking cost-competitive with biomass cooking 
in many areas, especially as solar panel prices decline. 
Sánchez-Jacob et al., (2021) found e-cooking to be cost-
competitive with LPG and charcoal in grid-connected 
households in Rwanda. Hakam et al., (2022) showed that 
in Indonesia, induction stoves are more economically 
advantageous than subsidised or non-subsidised LPG 
stoves, depending on electricity tariffs and subsidies. 
However, affordability remains a barrier in certain con-
texts. Keddar et  al., (2022) found that exclusive e-cook 
battery cooking could match firewood costs only with 
low mini-grid tariffs and optimal battery sizing. Ensuring 
a sustainable and affordable firewood supply remains a 
challenge for economic competitiveness.

Some studies have highlighted the market potential 
and feasibility of e-cooking solutions, particularly in 
certain contexts with appropriate policies and interven-
tions. With policy interventions like tariff adjustments, 
Shrestha (1995) suggested that e-cooking could be a 
viable demand-side management strategy in Nepal, par-
ticularly during certain seasons. Negi and Kumar (2018) 
found that increased penetration of energy-efficient 
technologies like e-cooking can influence and poten-
tially reduce electricity demand across various sectors in 
India compared to a business-as-usual scenario. Pradhan 
et al., (2019) revealed that increasing the penetration of 
e-cooking options in Nepal can significantly reduce fuel-
wood and LPG consumption while lowering GHG and 
air pollutant emissions compared to a business-as-usual 
scenario. Coley et al., (2020) highlighted the potential for 
e-cooking in urban areas and on mini-grids in Malawi, 
while LPG remains viable in urban settings, but address-
ing knowledge and infrastructure gaps is crucial. Leach 
et  al., (2021) found that e-cooking can be cost-effective 

and reduce human and ecological impacts in case stud-
ies in Zambia, Tanzania, and Kenya, with existing grids 
able to accommodate e-cooking. Ray and Chakraborty 
(2021) found that household cooperative efforts can 
decrease upfront investment costs for solar-PV-powered 
mini-grids with e-cooking and water treatment loads, 
enhancing overall feasibility. Sánchez-Jacob et al., (2021) 
suggested a stacking approach, combining electric and 
traditional cooking fuels, which could offer the most ben-
efits of full e-cooking at a lower cost.

Socio‑cultural factors and consumer behaviour influencing 
e‑cooking adoption
Moraskar and Daigavane (2022) identified economic 
factors, fuel availability, awareness of traditional cook-
stoves’ drawbacks, electric cooktops’ benefits, geographi-
cal location, and social influences as potential challenges 
to adopting e-cooking. Bisaga and To (2021) suggested 
developing sustainable funding and delivery mechanisms 
for modern energy cooking solutions in displacement 
settings to improve displaced populations’ access, health, 
and well-being. Paudel et  al., (2023) identified several 
factors influencing households’ preference for electric 
induction cooking in Nepal, including monthly expenses, 
electricity supply, cooking time, sickness rate, and envi-
ronmental conditions. However, the study found the 
installation cost to be statistically insignificant. House-
holds’ minimum willingness to pay for electric induc-
tion cooking can reach 4% of their monthly income. In 
addition, introducing informational treatments to pro-
mote induction stoves boosts uptake rates by 5% and 
willingness to pay by 9.58%. Consumers’ willingness to 
adopt clean energy is vital in shifting towards sustain-
able energy practices and achieving a carbon-free energy 
system (Afriyie et al., 2024). In view of this, Coley et al., 
(2020) identified weak infrastructure, consumer willing-
ness and ability to pay, and resistance to adopting modern 
cooking devices as barriers in Malawi. Diemuodeke et al., 
(2021) emphasised the need to overcome technical, eco-
nomic, policy, and socio-cultural barriers to widespread 
solar PV-induction cooking adoption in Africa. Ockwell 
et  al. (2021) studied Lighting Africa’s impact in Kenya 
and advocated for a socio-technical innovation system to 
achieve SDG 7. The study highlighted the limitations of 
the socio-technical integration system approach, includ-
ing addressing gender disparities, considering technology 
scale implications, ensuring equitable benefit distribution 
to local actors, and understanding political and economic 
dimensions.

High upfront costs and monthly electricity expenses 
can make e-cooking solutions unattainable for many 
(Leary et  al., 2021; Pelz & Urpelainen, 2020). However, 
innovative financing models like pay-as-you-go and 
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subsidies could help improve affordability and access 
(El-Khozenadar et al., 2022; Kizilcec et al., 2022). In addi-
tion, research indicates that while the initial costs may 
be high, e-cooking can become cost-competitive against 
polluting fuels like charcoal over time (Batchelor et  al., 
2018; Saha et al., 2021; Van Buskirk et al., 2021). In view 
of this, Howells et  al., (2006) analysed the South Afri-
can free basic electricity (FBE) subsidy’s influence on 
household energy choices, focussing on cooking prefer-
ence distortion towards e-cooking. The study finds that 
the FBE subsidy drives electricity use in poor households 
despite cheaper alternatives like LPG. Proposing clean 
energy credits instead could enhance welfare by at least 
6%. Khezri et al., (2022) evaluated the optimal sizing and 
economic analysis of rooftop PV and battery storage for 
grid-connected all-electric and gas-electric households 
under different system configurations. The authors found 
that the PV/battery system reduces the net present value 
more effectively for all-electric households than gas-elec-
tric households.

Beyond affordability, cultural preferences and aware-
ness levels also significantly influence consumer adoption 
of e-cooking. Perceptions around taste, safety concerns, 
and reluctance from male decision-makers within house-
holds can hinder adoption (Leary et  al., 2021). Some 
studies have suggested strategies to address this, such 
as awareness campaigns, peer marketing, and actively 
engaging men in decision-making. Adoption rates may 
be higher in contexts where households already purchase 
fuelwood or charcoal, have low-energy diets, and are 
familiar with low-power cooking devices (Brown et  al., 
2017). Other important factors that could be consid-
ered include gender dynamics and the potential impact 
on livelihoods. Shrestha et al., (2021) alluded that exist-
ing gender inequalities in household energy expenditure 
and the limited financial empowerment of women can 
impede the adoption of new energy technologies. There-
fore, mainstreaming gender considerations in energy 
policy and increasing women’s participation in the clean 
cooking workforce are recommended approaches. Lee 
et  al., (2021) revealed that although e-cooking could 
create job opportunities in sales and distribution, there 
are currently skills gaps and low female participation 
(less than 30%) in this sector. Furthermore, consumer 
behaviour, particularly the practice of “fuel stacking” or 
using multiple fuel sources, is common and should be 
considered the norm rather than a transitional phase 
(Kizilcec et al., 2022; Price et al., 2021). In addition, elec-
tricity demand patterns are complex and influenced by 
appliance ownership, occupancy patterns, and socio-
economic status (Scott & Coley, 2021). Therefore, under-
standing these local contexts and nuances is critical for 
successful e-cooking adoption.

Despite the challenges, some authors have also revealed 
opportunities and facilitating factors for e-cooking adop-
tion. For example, convenience, potential savings from 
efficient appliances, and improvements in quality of life 
can drive consumer interest (El-Khozenadar et al., 2022; 
Leary et al., 2021). Brown et al., (2017) alluded that bun-
dling e-cooking solutions with locally appropriate appli-
ances that enable productive uses could further enhance 
adoption. Theoretical frameworks such as the Behaviour 
Change Wheel and Diffusion of Innovations can pro-
vide insights into consumer motivations and behaviour 
change strategies (Leary et  al., 2021). Newell and Daley 
(2022a, 2022b) suggested supporting niche actors, build-
ing coalitions, rethinking behaviour change strategies, 
utilising state policy, and improving coordination among 
international actors to accelerate e-cooking adoption.

Environmental and health impacts of e‑cooking
The studies in this area primarily focus on assessing 
the environmental and health impacts of transition-
ing from traditional cooking fuels such as gas, biomass, 
and kerosene to cleaner e-cooking solutions. Multiple 
studies demonstrate that gas cooking can contribute 
significantly to poor indoor air quality and associated 
health risks. Dennekamp (2001) found that gas combus-
tion produces high concentrations of ultrafine particles 
(less than 100 nm) and nitrogen oxides  (NO2), especially 
when cooking fatty foods. Dick (2001) observed that par-
ticulate matter (PM10) from gas cooking induced pro-
inflammatory effects in lung epithelial cells, potentially 
posing health risks, particularly for vulnerable individu-
als. Kornartit et al., (2010) and To and Yeung (2011) also 
reported higher levels of  NO2, PM10, and volatile organic 
compounds (VOCs) in homes using gas cookers com-
pared to e-cookers.

In contrast, e-cooking solutions have been associated 
with lower levels of air pollutants and reduced health 
risks. Dai et  al., (2021) found that households with no 
combustion sources, including e-cooking, had the low-
est risks of persistent asthma, lung function decline, and 
bronchodilator reversibility over a 10-year period. Tran-
sitioning to e-cooking could also contribute to mitigat-
ing GHG emissions and achieving climate change goals. 
Yangka and Diesendorf (2016) estimated that promot-
ing e-cooking in Bhutan’s residential sector could reduce 
 CO2,  SO2, and  NOx emissions by 17%, 12%, and 8%, 
respectively, leveraging the country’s hydropower-based 
electricity generation. Similarly, Im and Kim (2020) pro-
jected that by 2030, a 20% share of e-cooking households 
in Korea could decrease cooking-related GHG emissions 
by 3.8% despite population growth. Gould et  al., (2023) 
found that the transition of over 750,000 households in 
Ecuador from gas to electric cookstoves likely decreased 
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national GHG emissions by offsetting cooking gas com-
bustion. In addition, introducing induction stoves cor-
related with reduced all-cause and respiratory-related 
hospitalisations nationwide, suggesting potential health 
benefits from the shift to e-cooking. However, it is 
important to consider the environmental impacts of the 
electricity generation sources used for e-cooking. In a life 
cycle assessment, Lee (2021) identified the major envi-
ronmental impact of mini-grids sized for e-cooking as 
PV panels and suggested limiting diesel generators to 2 h 
daily for environmental benefits. From an environmental 
perspective, Bandekar et al., (2022) findings suggest that 
cleaner cooking methods such as electric pressure cook-
ing and appropriate batch sizing can significantly reduce 
the environmental impact compared to open-vessel 
cooking or stovetop pressure cooking on electric ranges.

Summary and potential future research directions 
for the e‑cooking sector
E-cooking technologies such as induction cooktops 
and electric pots have shown promise due to their high 
energy efficiency, especially when integrated with renew-
able energy sources like solar power, to improve overall 
system efficiency. The review indicates that integrating 
e-cooking solutions with solar PV and microgrids can 
be cost-competitive and expand access to clean cooking 
in rural areas. However, challenges remain around high 
initial costs, grid stability, and limited capacity during 
peak demand periods. Proposed solutions include opti-
mised hybrid mini-grids, smart battery management, 
demand-side strategies, and innovative tariff structures. 
Although e-cooking powered by renewables offers signif-
icant potential to reduce GHG emissions and indoor air 
pollution compared to traditional fuels such as biomass 
and kerosene, affordability is a major barrier to consumer 
adoption, along with socio-cultural factors such as prefer-
ences, awareness levels, gender dynamics, and livelihood 
impacts. Therefore, understanding local contexts, “fuel 
stacking” behaviour, and employing behaviour change 
strategies are vital. Nonetheless, this review highlights 
e-cooking’s environmental and health benefits while 
emphasising the need to address technical, economic, 
and behavioural challenges through a holistic approach 
for successful integration with renewable energy sources 
and widespread adoption. Further research is needed to 
address the technical, economic, social, and environmen-
tal aspects of e-cooking solutions in order to accelerate 
their adoption and contribute towards achieving sustain-
able energy access and clean cooking goals. Based on the 
current trends and advancements in e-cooking reviewed 
above, the study proposes the following areas as potential 
future research directions for the e-cooking sector.

Technological advancements in e‑cooker design
This section’s proposed future research directions 
include optimising solar e-cookers using artificial intel-
ligence (AI) and integrating IoT and automation tech-
nologies. Solar e-cookers could be optimised using AI 
techniques such as machine learning and deep learning 
(Chauhan et al., 2022; Nazari et al., 2020). These tech-
niques can be leveraged to develop adaptive systems 
that continuously monitor and analyse various factors, 
including solar irradiance, ambient temperature, and 
user behaviour, to dynamically adjust the cooker’s set-
tings for optimal performance, efficiency, and usabil-
ity. For instance, machine learning algorithms can be 
trained on historical data and simulations to predict the 
cooker’s performance under different conditions, ena-
bling real-time adjustments to parameters such as the 
angle of the reflectors or the positioning of the cook-
ing vessel (Anilkumar et  al., 2023; Walke et  al., 2024). 
In addition, deep learning models can be employed to 
analyse images or sensor data to detect potential issues, 
such as obstructions or misalignments, and provide 
corrective measures (Archana & Jeevaraj, 2024; Thakur 
& Mishra, 2024). Furthermore, reinforcement learning 
techniques can be explored to develop self-optimising 
systems that learn from experience and adapt their 
behaviour to maximise performance metrics such as 
cooking time, energy efficiency, or user convenience 
(Schwung et al., 2019; Töpfer et al., 2023).

IoT and automation technologies could be integrated 
into e-cookers to enhance user convenience, energy 
efficiency, and cooking experience. These technologies 
can enable remote monitoring, control, and automation 
of cooking processes, reducing manual intervention 
and enabling more efficient energy management (Hos-
sein Motlagh et al., 2020; Yar et al., 2021). IoT-enabled 
e-cookers can be equipped with sensors to monitor 
various parameters, such as temperature, energy con-
sumption, and cooking progress (Gerlée, 2018). These 
data can be transmitted to a central control system or 
a user’s mobile device, allowing for real-time monitor-
ing and remote control of the cooking process (Gerlée, 
2018). Users can receive notifications, adjust settings, 
or even start or stop the cooking process remotely, 
enhancing convenience and flexibility. Automation 
technologies, such as programmable logic controllers 
or microcontrollers, can be integrated into e-cookers 
to automate various cooking tasks (A. Ali et al., 2021a, 
2021b). For example, temperature and time-based 
cooking profiles can be pre-programmed or learned 
over time, ensuring consistent and optimal results 
while minimising energy waste.
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Grid integration and energy management
Future research directions in this section comprise 
integrating e-cookers into smart grids and investigating 
demand-side management strategies. E-cookers could 
be incorporated into smart grid systems to enhance 
energy efficiency, demand-side management, and grid 
stability (Parvin et al., 2022; Sarker et al., 2021). Smart 
grid technologies, such as advanced metering infra-
structure (Ghosal & Conti, 2019) and demand response 
programmes (Deng et al., 2015; Good et al., 2017), can 
facilitate two-way communication between e-cookers 
and the grid, enabling demand-side management strat-
egies. In addition, e-cookers can be programmed to 
shift their peak load to off-peak hours or respond to 
grid emergencies by temporarily reducing their energy 
consumption by leveraging real-time pricing signals 
and demand response events. This demand-side flex-
ibility can help balance supply and demand, improve 
grid stability, and promote the integration of intermit-
tent renewable energy sources (J. Li et al., 2018; Santec-
chia et  al., 2022). In addition, smart grid technologies 
can enable the implementation of dynamic pricing 
models, such as time-of-use or real-time pricing, incen-
tivising consumers to shift their cooking activities to 
periods of lower electricity demand or when renewable 
energy generation is abundant (Öhrlund et  al., 2019; 
Rodrigues et al., 2022).

Researchers can also investigate the impact of demand-
side management strategies, such as time-of-use pricing 
and load shedding, on e-cooking adoption and grid sta-
bility. These strategies can influence consumer behav-
iour and energy consumption patterns, which in turn 
can affect the overall viability and success of e-cooking 
solutions (Shafiqa, 2023). Time-of-use pricing, which 
charges higher rates during peak demand periods, can 
incentivise consumers to shift their cooking activities to 
off-peak hours, reducing the strain on the grid (Muttaqee 
et  al., 2024). However, the effectiveness of this strategy 
may depend on factors such as consumer awareness, 
perceived affordability, and the availability of alternative 
cooking options during peak hours (Takama et al., 2012). 
Likewise, load shedding, which involves temporarily 
reducing or interrupting power supply to specific areas 
or consumers during periods of high demand, can also 
impact e-cooking adoption (Ngoma et al., 2018; Wiese & 
Van Der Westhuizen, 2024). Although it may be neces-
sary for grid stability, frequent or prolonged load shed-
ding events can discourage consumers from adopting 
e-cooking solutions due to concerns about reliability and 
convenience (Kizilcec et al., 2022). To assess the impact 
of these strategies, comprehensive studies involving con-
sumer surveys, energy consumption data analysis, and 
grid simulations can be conducted. In addition, pilot 

programmes and field trials can provide valuable insights 
into consumer behaviour and the practical implications 
of demand-side management strategies on e-cooking 
adoption and grid stability.

Socio‑economic and gender considerations
The proposed further research directions in this category 
include assessing financial viability and exploring gender 
dynamics in e-cooking adoption. Researchers can assess 
the long-term financial viability of e-cooking solutions, 
particularly in low-income and rural areas. This assess-
ment could consider factors such as tariff regimes, sub-
sidy policies, and affordability for target populations. 
Tariff regimes are pivotal in determining the affordabil-
ity of e-cooking solutions (Clements et al., 2020; Hakam 
et  al., 2022). Progressive tariff structures, where rates 
increase with higher consumption levels, may discour-
age e-cooking adoption among low-income households. 
Conversely, subsidised tariffs or targeted subsidies for 
e-cooking appliances and electricity consumption can 
improve affordability and promote adoption. Subsidy 
policies and innovative financing mechanisms, such as 
pay-as-you-go or mobile-enabled fee-for-service models, 
could also enhance access to e-cooking solutions (Newell 
& Daley, 2022b). In addition, comprehensive cost–benefit 
analyses should be conducted to evaluate the long-term 
financial implications of e-cooking solutions, considering 
fuel costs, maintenance expenses, and potential health 
and environmental benefits. Moreover, researchers can 
delve deeper into the gender dynamics of energy access 
and the socio-economic factors influencing the adop-
tion of e-cooking, focussing on designing inclusive poli-
cies and interventions. For instance, women are often 
primarily responsible for cooking and household energy 
management, making their perspectives and experiences 
crucial in shaping e-cooking solutions (Newell & Daley, 
2022a; Perros et  al., 2024). In this context, qualitative 
research methods, such as focus group discussions, inter-
views, and participatory approaches, can be employed 
to gather insights into the gender-specific barriers, pref-
erences, and concerns related to e-cooking adoption. 
These insights can inform the design of e-cooking appli-
ances, awareness campaigns, and capacity-building pro-
grammes tailored to address women’s specific needs and 
challenges. In addition, socio-economic factors, includ-
ing income levels, education, cultural norms, and house-
hold dynamics, can significantly influence the adoption 
of e-cooking solutions (Leary et  al., 2021; Vassiliades 
et al., 2022).

Behavioural change and adoption strategies
This area focuses on developing theoretical frameworks 
and innovative business models to promote e-cooking 
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adoption. Theoretical frameworks and models can pro-
vide motivational insights and guide the development 
of these interventions (Rosenkranz et  al., 2023; Sekhon 
et al., 2017). Theories and models from fields such as psy-
chology, sociology, and behavioural economics can be 
leveraged to understand and influence human behaviour 
related to e-cooking adoption. For example, the Theory 
of Planned Behaviour and the Norm Activation Model 
can provide insights into the factors that shape atti-
tudes, social norms, and perceived behavioural control, 
which can inform the design of awareness campaigns 
and interventions (Liu et al., 2017; Setiawan et al., 2020). 
Likewise, community-based participatory approaches, 
where target populations are actively involved in design-
ing and implementing interventions, can also effectively 
promote behavioural change (Trisnowati et  al., 2024). 
These approaches can leverage existing social networks, 
community leaders, and cultural norms to disseminate 
information and encourage the adoption of e-cook-
ing solutions. Similarly, future studies could explore 
innovative business models, such as pay-as-you-go or 
mobile-enabled fee-for-service models, to improve the 
affordability and access to e-cooking appliances and ser-
vices (Newell & Daley, 2022b). Pay-as-you-go models 
allow consumers to pay for e-cooking appliances and ser-
vices in small, regular instalments, reducing the upfront 
cost barrier (Schöne et  al., 2023; Stritzke et  al., 2023). 
These models can be facilitated by mobile money plat-
forms or integrated with existing utility billing systems 
(Baker, 2023). Mobile-enabled fee-for-service models can 
provide access to e-cooking services on a usage-based 
payment structure, eliminating the need for significant 
upfront investments.

Fuel stacking approaches, where households use a 
combination of electric and traditional cooking fuels for 
different meals to provide most of the benefits of full 
e-cooking at a lower cost, is also another future research 
area where researchers can investigate (Sánchez-Jacob 
et  al., 2021). Fuel stacking acknowledges that many 
households may be unable to transition completely to 
e-cooking due to financial constraints, infrastructure 
limitations, or cultural preferences (Nabukwangwa et al., 
2023). Households can leverage the advantages of both 
systems while mitigating the challenges associated with 
each by combining e-cooking with traditional fuels. For 
instance, households could use e-cooking appliances for 
quick meals or dishes that require precise temperature 
control, while relying on traditional fuels for tasks such 
as water heating or cooking large quantities of food. This 
approach can reduce the overall energy demand and 
costs associated with full e-cooking while still provid-
ing improved indoor air quality, reduced drudgery, and 
increased convenience compared to traditional cooking 

methods. It is worth mentioning that, assessing the 
potential of fuel stacking approaches requires a thorough 
understanding of household energy consumption pat-
terns, cooking practices, and preferences. Ethnographic 
studies, energy audits, and household surveys can pro-
vide insights into the feasibility and potential benefits of 
fuel stacking in different contexts.

Conclusion
This study provides a comprehensive overview of cur-
rent research on e-cooking from 1993 to 2023 and its 
potential for contributing to sustainable development. 
The PRISMA guidelines were followed to examine papers 
for systematic review, and the biblioshiny package in 
R software was used to perform the bibliometric analy-
sis. Between 1993 and 2009, the number of articles was 
low, with some years having none. A significant surge 
started in 2020, peaking at 23 articles in 2021. Publica-
tion numbers remained high in 2022 and 2023, indicat-
ing sustained research interest. The United Kingdom, the 
United States, Japan, Australia, and China are the top five 
countries leading in e-cooking research globally. How-
ever, some developing countries, including India, Nepal, 
Tanzania, South Africa, Malawi, Nigeria, Ghana, Kenya, 
and Indonesia, are among the top 20 countries leading 
research in this field. The thematic map analysis identi-
fied six clusters: clean cooking, cost of electricity, e-cook, 
fuel stacking, the Internet of Things, and life cycle assess-
ments. Central themes were clean/electric cooking, 
energy access, mini-grids, and rural electrification. These 
highlighted the focus on sustainable, accessible e-cook-
ing solutions, particularly for rural and off-grid areas, 
through decentralised systems. The systematic review 
revealed that e-cooking technologies such as induction 
cooktops, smart ovens, and electric pressure cookers 
offer promising solutions with high energy efficiency and 
the potential to reduce cooking time and emissions. Inte-
grating these with renewable sources, particularly solar 
PV and microgrids, can provide cost-competitive and 
sustainable cooking options, especially in off-grid areas. 
However, affordability remains a major barrier, necessi-
tating innovative financing models such as pay-as-you-go 
and subsidies. Socio-cultural factors, including consumer 
preferences, awareness, gender dynamics, and livelihood 
impacts, heavily influence adoption, requiring an under-
standing of local contexts and behaviour change strate-
gies. Although e-cooking powered by renewables reduces 
GHG emissions and indoor air pollution compared to 
traditional biomass fuels, benefiting health, challenges 
exist around technical aspects such as grid stability with 
high e-cooking loads. Therefore, a holistic approach 
involving stakeholders, policy support, awareness cam-
paigns, and technical solutions such as optimised hybrid 
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mini-grids and demand-side management is crucial. 
The practice of using multiple fuels is widespread, so 
addressing “fuel stacking” behaviour is critical. Further 
interdisciplinary research is needed on optimising solar 
e-cookers, integrating Internet of Things/automation and 
innovative business models, assessing long-term financial 
viability, and exploring policy interventions to accelerate 
this transition while maximising sustainable develop-
ment benefits.
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