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Abstract 

The increasing adoption of electric vehicles is expected to substantially raise electricity demand. This could require 
significant grid investment to maintain secure electricity supply, which has traditionally been provided through infra-
structure upgrades. The potential of smart technologies like Vehicle-to-Grid (V2G) to contribute to security of sup-
ply has prompted the need to quantify their impact. We hypothesize that the F-Factor methodology can effectively 
quantify V2G’s security of supply contribution. Applying F-Factor analysis to V2G through optimization modeling 
and sensitivity studies, we find that key parameters like V2G charger ratings, EV battery capacities, and load profile 
peakiness significantly influence the results. We conclude that the F-Factor provides a valuable tool for assessing V2G’s 
potential to enhance security of supply, with implications for more efficient grid planning in the context of transport 
electrification.
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Introduction
Motivation
The ongoing electrification of the transport sector, 
through the increasing adoption of electric vehicles 
(EVs), marks a significant shift toward a more sustain-
able and environmentally friendly transportation. This 
transition is also driven by advances in battery technol-
ogy, electricity demand management technologies, such 
as demand-side response, and EV charging technologies, 
such as smart charging, Vehicle-to-Building (V2B), and 
Vehicle-to-Grid (V2G) (Amann et al., 2022).

While the adoption of EVs offers substantial envi-
ronmental benefits, such as reduced emissions and 
decreased reliance on fossil fuels, it also presents 

challenges, particularly in terms of electricity demand 
(Giannelos et al., 2023a). The widespread use of EVs can 
lead to a significant increase in peak electricity demand, 
as charging these vehicles adds a considerable amount of 
electricity load. Therefore, to maintain the same level of 
security of supply, substantial investments may be nec-
essary to upgrade the grid infrastructure. These invest-
ments may not only be in traditional technologies but 
also in smart technologies. Specifically, the advent of new 
smart technologies and concepts, like demand response 
systems, smart charging, and V2G, have been shown to 
have the potential to enable more efficient management 
of the increased load and facilitate the seamless integra-
tion of EVs into the existing energy ecosystem (Borozan 
et al., 2022a).

The motivation for this research stems from the 
urgent need to address the challenges posed by the 
rapid adoption of EVs while maximizing their potential 
benefits to the grid. As countries worldwide set ambi-
tious targets for EV adoption to meet climate goals, the 
pressure on electricity grids is mounting. Traditional 
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grid reinforcement approaches are often costly and 
time-consuming, making it crucial to explore innova-
tive solutions that can provide flexibility and enhance 
grid resilience.

V2G technology emerges as a promising solution 
in this context. By enabling bidirectional power flow 
between EVs and the grid, V2G has the potential to 
transform EVs from mere loads into valuable distrib-
uted energy resources. This capability could significantly 
alleviate peak demand pressures, improve grid stability, 
and potentially defer or reduce the need for costly grid 
upgrades. However, to fully leverage the benefits of V2G, 
it is essential to develop robust methodologies for quanti-
fying its contribution to grid security and reliability.

In this context, V2G can be seen as an investment 
option that can reduce peak demand by enabling the 
bidirectional flow of electricity from the grid to EVs and 
vice versa (Most et  al., 2020). This peak reduction has 
been shown to be equivalent to the provision of secu-
rity of electricity supply to consumers since by alleviat-
ing peak loads, V2G helps in preventing overloading of 
the grid infrastructure, thereby ensuring a more stable 
and reliable electricity supply (Ilo et al., 2019). Since V2G 
technology can indeed contribute to the provision of a 
secure electricity supply, the focus is then on how this 
contribution can be quantified. In this regard, the current 
paper presents the F-Factor methodology, which allows 
the quantification of the contribution of V2G technology 
to the security of electricity supply. The current work is 
the first-ever application of this methodology to V2G.

Furthermore, the motivation for this research is driven 
by the need to bridge the gap between theoretical poten-
tial and practical implementation of V2G technology. 
While numerous studies have highlighted the technical 
feasibility of V2G, there remains a lack of standardized 
methods for assessing its value to the grid, particularly in 
terms of security of supply. This gap hinders the develop-
ment of appropriate regulatory frameworks and market 
mechanisms that could incentivize V2G adoption and 
fairly compensate EV owners for the grid services they 
provide. Note that current regulatory frameworks do not 
prescribe any formal methodology for the quantification 
of the contribution to the security of supply from smart 
technologies. This is the case, for example, with Engi-
neering Recommendation P2/6 (Electricity Networks 
Association, 2006), which is the distribution network 
planning standard followed by the Distribution Network 
Operators in Great Britain. A lack of consistent method-
ology may pose an obstacle to the realization of the elec-
trification of the transport sector and of the transition to 
a smart grid in general (Beulertz et  al., 2019; Charous-
set-Brignol et al., 2021; Giannelos et al., 2023b; Münster 
et al., 2020).

Hence, an update of the planning standards is neces-
sary so that the security contribution of non-network 
solutions, such as V2G, can be taken into consideration. 
In this context, the current publication formalizes an 
approach, called F-Factors, for quantifying the security 
contribution of V2G; this approach is crystalized through 
a case study both qualitatively and quantitatively.

Literature review
Traditionally, the security of electricity supply has been 
provided through investment in conventional technolo-
gies (Greenwood et  al., 2020), including power trans-
formers and electricity transmission and distribution 
lines. However, in recent years, there has been an ongo-
ing development of smart grid technologies, such as V2B, 
dynamic line rating (Giannelos et  al., 2018a), demand-
side response (Giannelos et al., 2017, 2018, 2018b), coor-
dinated voltage control (Konstantelos et al., March 2017), 
energy storage (Giannelos et  al., 2019), and soft open 
points (Giannelos et  al., 2015, 2016). This technological 
progress as well as plans for the wide-scale deployment 
of such technologies (Giannelos et al., 2021) has led to a 
rethinking of the concept of security of supply, prompt-
ing calls for its update to include such non-network solu-
tions (Giannelos et al., 2020).

Regarding energy storage, its ability to provide secu-
rity of supply was first recognized in a study conducted 
by EPRI in 1976 (Public Service Electric & Gas Company, 
1976) that underlined the fact that utilities can treat long-
duration storage devices (such as pumped hydro storage) 
as sources of reliable capacity since they can discharge 
during periods of peak demand. Then research was 
focused on methodologies to calculate the energy storage 
contribution to security of supply, such as dynamic pro-
gramming as in Sioshansi et  al. (2014), taking into con-
sideration the effect of power system outages on system 
operation. However, this method was focused on outages 
rather than on the reduction of peak demand. Authors 
in Konstantelos, (2018) used a probabilistic methodol-
ogy based on chronological Monte Carlo simulations 
for computing the effective load-carrying capability of 
energy storage, which is a proxy of its security contribu-
tion, taking also into account its ability to charge dur-
ing partial outage conditions such as when only some 
of the substation transformers are online. However, the 
complexity of this methodology involved significant 
large solution times, ranging even weeks, which was 
prohibitive for conducting large scale sensitivity stud-
ies. Moreover Abdullah et al., (2013) computes the secu-
rity contribution of energy storage, when it is used for 
smoothing the output of a wind farm, again with a focus 
on outages. Authors in Leite da Silva et  al. (2006) com-
pute the energy storage security contribution by focusing 
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on energy storage assets installed at islanded microgrids 
rather than on the main grid. The aforementioned 
approaches focused on energy storage, without consider-
ing the integration of electric vehicles (EVs).

Regarding the V2G technology, ongoing research is 
focusing on its impact on the distribution grid in terms of 
alleviating the need for conventional reinforcements. The 
authors in Mastoi et al. (2023) emphasize the importance 
of V2G technology particularly during outages, suggest-
ing a role for V2G in enhancing grid resilience. A refer-
ence to the potential of V2G to contribute to the security 
of supply is made in Sultan et  al., (2022), outlining also 
a list of other potential benefits. Authors in Owens et al. 
(2022) explain how V2G can operate as part of an aggre-
gator business model, where the aggregator will optimize 
the charge and discharge of individual vehicles to func-
tion as a synergistic, bulk energy resource, and load. 
Moreover, Bayani et  al., (2022) reviews the implications 
of transportation electrification, including how EVs can 
operate as loads or distributed power resources while 
taking into account the V2G technology. This suggests a 
role for V2G in balancing the grid and providing secu-
rity of electricity supply to consumers. Furthermore, 
O’Neill et al., (2022) mentions that V2G can support the 
integration of variable distributed renewable generation, 
suggesting a positive impact on grid stability and sustain-
ability. Authors in Tirunagari et  al., (2022) address how 
EVs, through smart charging and V2G, can impact the 
electricity and energy sectors and contribute to the secu-
rity of electricity supply.

Authors in Sachan and Adnan (2018) investigate the 
impact of various electric vehicle (EV) charging methods 
on distribution grids, focusing on reducing network peak 
load demand and improving voltage stability. The paper 
introduces a stochastic model that incorporates the vari-
ability of EV availability, such as arrival and departure 
times, and wind power generation to optimize charg-
ing costs and network constraints. The study also pro-
poses modifications to grid infrastructure to enhance 
the integration of EVs without significant reinforcement, 
ultimately suggesting a coordinated charging scheme to 
optimize EV integration while minimizing costs and grid 
losses.

Moreover, Sachan and Kishor, (2016) proposes a strat-
egy to determine the optimal number of electric vehicles 
(EVs) that can be safely integrated into a distribution 
network without violating its constraints. It assesses the 
impact of contingencies on EV charging by redistributing 
EV loads from affected feeders to nearby feeders using a 
performance index. The study also develops a communi-
cation network for smart charging to manage the EV load 
efficiently during contingencies, ensuring grid stability 
and minimizing operational costs.

Then Sachan et  al., (2020) examines the impact of 
various charging infrastructures—distributed, fast 
charging, and battery swapping—on the power grid. It 
compares these infrastructures based on factors like 
availability, driving patterns, and charging costs, find-
ing that distributed infrastructure is most cost-effective 
and provides better regulation power. In addition, the 
paper evaluates smart charging strategies, concluding 
that intelligent, coordinated charging (especially power 
factor control) mitigates peak load impacts and opti-
mizes grid performance compared to uncoordinated 
charging.

Authors in Sachan et  al., (2022) provide an extensive 
review of existing standards and practices for integrating 
electric vehicle (EV) charging stations with utility grids. 
The paper emphasizes the importance of standardiza-
tion and best practices to ensure safe, dependable, and 
interoperable grid integration. The paper also discusses 
the role of distributed energy resources (DER) and V2G 
technology in power system operations, addressing tech-
nical challenges and offering recommendations for future 
implementation and research.

Authors in Sachan et  al., (2021) present a novel 
approach for the optimal placement and operation of 
electric vehicle (EV) charging stations using a chicken 
swarm optimization (CSO) algorithm. The study inte-
grates the planning and operational aspects into a multi-
objective framework that considers cost, voltage stability, 
and grid reliability. Three charging strategies—uncoordi-
nated charging, coordinated charging, and bidirectional 
V2G—are evaluated, with results indicating the advan-
tages of coordinated charging and V2G over uncoordi-
nated charging in terms of grid stability and efficiency.

However, none of the existing literature presents a 
methodology for the quantification of the contribution 
to electricity supply by V2G. Consequently, the cur-
rent paper is the first one presented in the literature that 
offers a comprehensive framework for the quantification 
of the contribution to security of supply from V2G tech-
nology. Note that, in most of the literature, the capacity 
value of energy storage has been quantified based on the 
use of reliability parameters and technoeconomics as in 
Black and Strbac, (2007); Denholm and Sioshansi, (2009; 
Drury et al., (2011); Thatte, (2012). However, the F-Factor 
methodology does not take into consideration reliability 
parameters of grid assets such as mean time to repair or 
mean time before failure. Rather, F-Factors focus on the 
maximum peak reduction achieved.

Contributions
The contributions of the present publication are as 
follows:
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•	 Presentation, for the first time in the literature, of 
the F-factor methodology for the quantification of 
the security contribution of the V2G technology.

•	 Demonstration of the mathematical optimization 
framework that models V2G operation for the min-
imization of peak demand.

•	 In-depth sensitivity analyses to observe the effect of 
system parameters on the security contribution of 
V2G.

Building upon these core contributions, this paper 
makes several additional significant advancements 
in the field of V2G integration and grid security 
assessment:

First, it introduces a novel, quantitative approach to 
evaluate the security contribution of V2G technology. 
The F-Factor methodology presented in this paper pro-
vides a standardized, reproducible metric that can be 
used by grid operators, policymakers, and researchers to 
assess the impact of V2G on grid security. This contribu-
tion is particularly valuable as it offers a concrete tool for 
comparing V2G with other grid reinforcement options, 
potentially influencing investment decisions and policy 
formulation in the energy sector.

Second, the paper bridges the gap between theoretical 
V2G potential and practical grid planning. By develop-
ing a mathematical optimization framework that mod-
els V2G operation for peak demand minimization, this 
research provides a practical tool for grid operators to 
integrate V2G considerations into their planning pro-
cesses. This framework not only demonstrates how V2G 
can be optimally utilized but also lays the groundwork for 
more sophisticated models that could incorporate other 
grid services provided by V2G, such as frequency regula-
tion or voltage support.

Third, the comprehensive sensitivity analyses presented 
in this paper offer invaluable insights into the factors that 
influence the security contribution of V2G. By examining 
how various system parameters affect the F-Factor, this 
research provides a nuanced understanding of the con-
ditions under which V2G can be most effective. These 
insights are crucial for grid operators and policymakers 
in designing targeted strategies to maximize the benefits 
of V2G deployment.

Furthermore, this paper contributes to the broader dis-
course on the integration of distributed energy resources 
into the grid. By quantifying the security contribution 
of V2G, it provides a model that could potentially be 
adapted or extended to other forms of distributed stor-
age or flexible loads. This has implications not only 
for EV integration but also for the overall transition 
toward a more decentralized, flexible, and resilient grid 
infrastructure.

Lastly, the research presented here lays the founda-
tion for future work in areas such as dynamic pricing 
mechanisms for V2G services, regulatory frameworks 
to incentivize V2G adoption, and the development of 
more advanced grid management systems that can fully 
leverage the potential of V2G technology. By providing a 
quantitative basis for assessing V2G’s contribution to grid 
security, this paper opens up new avenues for research 
and practical applications in the rapidly evolving field of 
smart grid technologies.

Organization of the paper
The paper is structured as follows. In Sect. “The method-
ology of F-Factors for V2G”, the methodology of F-Factors 
is presented in detail, and the associated mathematical 
formulation is shown. Sect. “Case study: evaluation of the 
V2G security contribution via F-Factors” presents an in-
depth sensitivity analysis that demonstrates the presents 
key parameters impacting on F-Factors. Sect.  “Discus-
sion” discusses the findings, while Sect. 6 presents future 
work pathways and concludes.

The methodology of F‑Factors for V2G
In the previous section, it was mentioned that V2G tech-
nology can provide security of electricity supply, which 
can be evaluated using the F-Factor methodology.

Definition of the F‑Factor metric
The charging and discharging operation of EVs through 
V2G chargers can be conducted in such a way that can 
lead to peak load reduction. Specifically, during periods 
of relatively low system demand, the EVs can be charged; 
this charge is subsequently released during periods of 
peak or near-peak demand, consequently leading to 
reduction. This can trigger deferral or displacement (i.e., 
prevention) of expensive conventional network reinforce-
ment that would otherwise be required for the secure 
accommodation of power flows. It can also contribute to 
security of supply since, during periods of peak demand, 
a sudden loss of a critical network asset may lead to inter-
ruptions in the supply of electricity to consumers, which 
can be avoided if the peak demand is minimized via V2G.

The current paper presents the application, for the 
first time, of the F-Factor metric for the evaluation of the 
security contribution of the V2G technology. Specifically, 
the F-Factor metric is defined as the ratio of the optimal 
reduction in peak electricity demand, represented by P, 
over the power capability of the V2G technology, rep-
resented by C, as shown in Eq. (1) below. In this regard, 
since both the numerator and denominator are measured 
in the same units, this metric is dimensionless, and it is, 
therefore, often expressed in percentage terms.
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The numerator is the optimal solution of the math-
ematical optimization model, which is presented in sub-
Sect.  “The optimization model”. This model is able to 
optimize the reduction of the peak demand using V2G. 
On the other hand, the denominator is an input param-
eter and is not the solution of an optimization study.

The F‑Factor methodology framework
To facilitate a comprehensive understanding of the 
approach, we present a detailed methodology framework 
for quantifying the security contribution of V2G technol-
ogy using the F-Factor metric. Figure  1 illustrates this 
framework, providing a visual representation of the key 
components and their interrelationships in our study.

The methodology framework consists of five main 
components, each representing a crucial step in our 
analysis:

1.	 Input data: This initial component encompasses the 
essential data required for the analysis. It includes 

(1)F =
P

C

load profiles, which represent the baseline electric-
ity demand patterns; V2G charger ratings, which 
define the power capacity of the charging infrastruc-
ture; and EV battery capacities, which determine the 
energy storage potential of the electric vehicle fleet. 
These inputs form the foundation of our subsequent 
analyses and directly influence the potential security 
contribution of V2G technology.

2.	 Optimization model: At the core of the methodology 
lies the optimization model. The mathematical for-
mulation aims to minimize peak electricity demand 
by optimally scheduling V2G operations. The model 
incorporates various constraints, including EV state 
of charge limitations and charger power limits, to 
ensure realistic and feasible solutions. By solving this 
optimization problem, we determine the maximum 
potential peak reduction achievable through V2G 
technology.

3.	 F-Factor calculation: Following the optimization, we 
calculate the F-Factor, which quantifies the security 
contribution of V2G. The F-Factor is defined as the 
ratio of the achieved peak demand reduction (deter-
mined by the optimization model) to the total V2G 

Input Data
• Load Profiles
• V2G Charger

rating
• EV battery

characteristics

Optimization
Model

• Objective,
Constraints

F-Factor
Calculation

• F=Peak
Reduction/V2
G power
capability

Sensitivity
Analysis

• Charger ratings
• Battery capacities
• Load profile

peakiness

Results and
Insights

• F-Factor trends
• V2G security

contribution
• Policy

implications

Fig. 1  V2G F-Factor methodology framework diagram
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power capability. This metric provides a standardized 
measure of V2G’s effectiveness in enhancing grid 
security.

4.	 Sensitivity analysis: To gain deeper insights into the 
factors influencing V2G’s security contribution, we 
conduct comprehensive sensitivity analyses. These 
analyses explore how variations in key parameters—
such as charger ratings, battery capacities, and load 
profile characteristics—impact the F-Factor. This step 
is crucial for understanding the robustness of V2G’s 
contribution under different scenarios and system 
configurations.

5.	 Results and insights: The final component of our 
framework focuses on interpreting the outcomes 
of our analyses. Here, we examine F-Factor trends 
across various scenarios, assess the overall security 
contribution of V2G technology, and derive policy 
implications. This step translates our technical find-
ings into actionable insights for grid operators, poli-
cymakers, and other stakeholders in the energy sec-
tor.

The arrows in the diagram illustrate the logical flow 
of the methodology, from input data through to final 
insights. This framework ensures a systematic and com-
prehensive approach for evaluating V2G’s potential in 
enhancing grid security.

The optimization model
As mentioned, the numerator of Eq.  (1) can be found 
by solving an optimization model. Particularly, (2)–(8) 
below describe the specified optimization model, which 
corresponds to a system that an EV fleet charges and dis-
charges through V2G chargers.

The objective function is described in (2) where Pmax 
is a decision variable representing the maximum (peak) 
electricity demand. The peak demand, as defined in (3), 
is greater than or equal to the summation of the base-
load demand represented by input parameter Dt , with 
the power charged/discharged by the EV fleet. Specifi-
cally, the baseload demand Dt is the demand that does 
not correspond to the charging/discharging operation 
of EVs. In addition, Pin

t  is a decision variable that repre-
sents the power charged into the battery of an electric 
vehicle, while Pout

t  is a decision variable representing the 
power discharged from an electric vehicle into the grid. 
Also, input parameter NEV  is the total number of electric 
vehicles in the system. The parameter at is also known as 
“availability” and is a time series of values between 0 and 
1, modeling the connection pattern of the EVs to the V2G 
chargers. In other words, the product NEV · at yields the 

number of electric vehicles that are connected to a V2G 
charger at time t.

Constraint (4) models the state of charge of the EV fleet 
at time period t. Specifically, the state of charge (SOC) of 
a single electric vehicle is a decision variable represented 
by Et (kWh), which is multiplied by NEV • at , which 
is the number of electric vehicles that are connected to 
V2G chargers at time period t. In essence, the left-hand 
side of (4) calculates the SOC of the EVs that are con-
nected to V2G chargers at period t.

Regarding the right-hand side of (4), the first term 
is the state of charge of the EV fleet at time period t-1, 
whereEt−1 , is the SOC of an electric vehicle at time t-1, 
multiplied by the number of electric vehicles connected 
to V2G chargers at period t-1. Then the second term of 
the right-hand side refers to the charging and discharg-
ing operation of the connected EV fleet, while taking into 
account the efficiencies. Specifically, δ is the duration of 
a time period, which in this case study is equal to 1  h, 
and ηc , ηd are the efficiencies of charging and discharg-
ing. Then the third term of the right-hand side takes 
into account the energy stored in the EVs that connect 
to the V2G chargers at time period t. Specifically, input 
parameter rt represents the percentage of the total num-
ber of electric vehicles that arrive at V2G chargers after 
a journey. Input parameter R is the power capability of 
the battery of an electric vehicle, while input parameter 
µ is the duration (hours) of the battery of an EV, which is 
the number of hours required for its full charge. Hence, 
the product R · µ is equal to the energy capacity (kWh) of 
the battery of an EV. Then the input parameter π in is the 
state of charge of an EV expressed as a percentage of its 
energy capacity. For instance, π in = 40% means that the 
EV’s state of charge is equal to 40% of its energy capacity 
at the time when it gets connected to a V2G charger as 
described in Borozan et al., (2022b). In a similar vein, the 
last term of the right-hand side refers to the time when 
the EVs disconnect from the V2G chargers. In this con-
text, the input parameter qt is the percentage of the total 
number of electric vehicles that get disconnected from 
the V2G chargers at time period t. The parameters at , 
rt , and qt are constructed as follows: at = at−1 + rt − qt 
meaning that the number of electric vehicles connected 
to V2G chargers at t is found by summing the num-
ber of EVs connected to chargers in the previous time 
period, plus the number of vehicle just connecting to the 
chargers at t, minus the number of EVs disconnecting at 
t. Also, πout is the state of charge of an electric vehicle 
when it disconnects from the V2G charger, expressed as a 
percentage of its energy capacity.

Constraint (5) states the assumption that the SOC 
of an electric vehicle at the last period of the horizon, 
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represented by ET , is equal to the SOC in the begin-
ning, represented by E0 . Also, constraint (6) specifies 
the bound for the SOC of the battery of an electric vehi-
cle, symbolized by Ẽmax . This upper bound is the energy 
capacity of the battery of an EV. Finally, (7)–(8) set the 
upper bound to the amount of power charged into the 
battery of an EV and discharged from it, where P̃ is the 
rating (kW) of the V2G charger, which is assumed to be 
equal to the power capability R (kW) of the battery of the 
EV. Note that Ẽmax = µR , i.e., the energy capacity of the 
battery of an EV is equal to the product of its duration 
with its power capability.

The FICO Xpress Optimization process
In this paper, we utilize the aforementioned optimization 
model designed to minimize the peak electricity demand 
by optimally scheduling V2G operations. This optimi-
zation is essential for determining the numerator of the 
F-Factor, which quantifies the optimal reduction in peak 
demand. The optimization process can be outlined in the 
following steps.

1.	 Model setup: The optimization model is imple-
mented using FICO Xpress Mosel, a modeling lan-
guage for mathematical optimization. The model 
closely follows the mathematical formulation pre-
sented in Eqs. (2)–(8) of sub-Sect. “The optimization 
model”.

2.	 Objective function: The primary objective, as stated 
in Eq. (2), is to minimize the peak electricity demand 
( Pmax).

(2)minimize Pmax

(3)Pmax ≥ Dt +

((
P
in
t − P

out
t

)
· NEV · at

)
∀t ∈ T

(4)
Et · N

EV · at = Et−1 · N
EV · at−1 + NEV · at ·

(
δ · ηc · Pin

t − δ ·
Pout
t

ηd

)
∀ t ∈ T

+NEV · rt ·
(
R · µ · π in

)
− NEV · qt ·

(
R · µ · πout

)

(5)E0 − ET = 0

(6)Et ≤ Ẽmax ∀ t ∈ T

(7)P
in
t ≤ P̃ ∀t ∈ T

(8)P
out
t ≤ P̃ ∀t ∈ T

3.	 Constraints: The model includes several con-
straints to ensure realistic and feasible scheduling, as 
described in Eqs. (3)–(8).

a.	 Specifically, the peak demand constraint as in (3), 
ensures that the peak demand (z) is greater than or 
equal to the base demand plus the net V2G power 
flow. In FICO Xpress constraint (3) is written as fol-
lows: forall(t in Periods) z >  = PDemand(t) + (V2GPch
ar(t)—V2GPdisch(t)) * number_of_EV * avail(t).

b.	 State of charge (SOC) balance as in (4): This con-
straint is implemented for each time period, balanc-
ing the SOC of the EV fleet based on the previous 
period’s SOC, charging/discharging activities, and 
EV arrivals/departures. In FICO Xpress, constraint 
(4) is written as follows: forall(t in 2..NPer) do V2G_
SOC(t) * number_of_EV * avail(t) = V2G_SOC(t-
1) * number_of_EV * avail(t-1) + number_of_EV * 

avail(t) * duration * V2GPchar(t) * ev_eff_charge—
number_of_EV * avail(t) * duration * V2GPdisch(t) / 
ev_eff_discharge + number_of_EV * arr(t) * energy_
capacity_ev * ev_minStor—number_of_EV * dep(t) * 
energy_capacity_ev * ev_outStorend-do

c.	 Initial and final SOC equality, as in (5): This con-
straint ensures that the SOC at the beginning 
and end of the optimization horizon are equal. 
In FICO Xpress, this is written as follows: V2G_
SOC(NPer) = V2G_SOC(0).

d.	 Charger and battery constraints as in (6)–(8): These 
constraints limit the charging and discharging rates. 
Specifically, they limit the SOC of each EV to its 
maximum capacity, and limit the charging and dis-
charging power to the charger rating.

4.	 Solving the model: The FICO Xpress solver is then 
called to minimize the objective function subject to 
these constraints. The optimization process is imple-
mented using the FICO Xpress Optimization Suite, 
with the command minimize(obj), where obj is the 
objective function.

5.	 Solution extraction: Once the optimization model 
is solved, the solution is extracted using the FICO 
command getsol, which allows to capture the optimal 
solution from a decision variable after the model has 
been solved.

The optimization process described above systemati-
cally minimizes the peak electricity demand using V2G 
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operations and effectively provides the numerator for 
the F-Factor.

The following section presents the case study.

Case study: evaluation of the V2G security 
contribution via F‑Factors
Figure  2 shows two typical electricity load profiles 
(Energy Networks Association, 2018), where the hori-
zontal axis shows the 168  h of the week, while the ver-
tical axis has normalized values (i.e., between 0 and 1). 
The two profiles characterize the baseload electricity 
demand (i.e., without the consideration of the electric 
vehicle charging load). Both profiles contain the same 
energy (kWh), with the difference being that the distance 
between the maximum and minimum values for profile 1 
is greater than that for profile 2, meaning that profile 1 is 
the ‘peaky’, while profile 2 is the ‘flat’ one.

The analysis that will follow will also show that whether 
a profile is peaky or not can have an impact on the F-Fac-
tor; the results of the analysis are independent of the 
selection of the profiles and apply for any selection of 
peaky and flat profiles.

Sensitivity analysis is performed by considering a 
series of studies, each of which involves solving the 
aforementioned optimization problem each time for 
a different combination of the following parameters: 
charging efficiency ηc , rating of the V2G charger P̃ , and 
storage durationµ . In addition, sensitivity analyses have 
been carried out to determine how the peakiness of a 
load profile can affect the F-Factors. Finally, sensitivity 
analysis has been conducted for different values for the 
duration of the peak demand for profile 1.

The results are shown in Tables 1, 2, 3 below. Table 1 
includes the F-Factors when the peaky profile 1 is 
used to represent the baseload demand, while Table  2 
includes the F-Factors when the flat profile 2 is used. 
Furthermore, Table  3 includes the F-Factors for pro-
file 1 where the duration of the peak demand is equal 
to 6  h. Note that in both Tables  1, 2, the duration of 
the peak demand is 1 h, as shown in Fig. 2. That is, in 
Table  3, profile 1 is identical to that shown in Fig.  2 
except that the peak demand, which occurs on day 4, 
lasts for 6 h instead of 1 h.

Fig. 2  Normalized time series for weekly electricity load profiles 1 and 2, with profile 1 having a peak demand of 7035 kW, while profile 2 having 
a peak of 5361 kW

Table 1  F-Factors for different values of the duration µ of the battery of an EV (between 1 and 6 h), rating P̃ of a V2G charger, and the 
efficiency of charging the battery of an EV (80–100%), corresponding to profile 1, and for 1-h duration of its peak

µ P̃ = 7.4 kW P̃ = 15 kW P̃ = 30 kW P̃ = 43 kW P̃ = 70 kW

Efficiency Efficiency Efficiency Efficiency Efficiency

100% 90% 80% 100% 90% 80% 100% 90% 80% 100% 90% 80% 100% 90% 80%

1h 66.51 66.34 66.15 44.59 44.59 44.59 33.42 33.42 33.42 28.59 28.37 28.12 20.08 20.03 19.98

2h 83.53 83.53 83.53 66.85 66.85 66.85 44.80 44.63 44.45 35.00 34.97 34.94 26.06 26.02 25.99

3h 83.53 83.53 83.53 82.86 82.27 81.63 50.99 50.96 50.93 41.07 41.01 40.94 31.30 31.30 31.30

4h 83.53 83.53 83.53 83.53 83.53 83.53 57.18 57.18 57.06 46.32 46.31 46.30 35.40 35.38 35.35

5h 83.53 83.53 83.53 83.53 83.53 83.53 62.55 62.49 62.43 51.56 51.56 51.56 38.93 38.93 38.93

6h 83.53 83.53 83.53 83.53 83.53 83.53 67.79 67.79 67.79 55.82 55.76 55.69 42.46 42.01 40.08
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Each of these tables shows the F-Factors for six pos-
sible values for the duration µ of the EV battery (1  h 
until 6 h), for five possible values for the rating P̃ of the 
V2G charger, and three possible values of the efficiency 
of charging ηc (80, 90, and 100%), which are typical effi-
ciencies for EV batteries. That is, a total of 90 optimiza-
tion models are run for each of the 3 tables.

Note that 7.4 kW chargers are typically used for resi-
dential charging in the U.K. and are acceptable options 
for EV owners who do not require fast charging. 
Regarding 15 kW and 30 kW chargers, they offer faster 
charging than the standard 7.4 kW home chargers and 
fall into the fast-charging category. The 43  kW charg-
ers can be found in rapid AC charging stations, suitable 
for public locations where a quick charge is needed. 
Finally, 70 kW chargers also fall into the rapid charging 
category and provide a very high-power output, mak-
ing them ideal for public charging stations where a fast 
turnaround is necessary. The distribution network is 
assumed to have a total of NEV = 50 electric vehicles. 
The studies are conducted with the use of the FICO 

Xpress Optimization platform on a Xeon 3.46  GHz 
computer.

Discussion on the results follows in Sect.  “Discus-
sion” below.

Discussion
The results obtained in the previous section allow us 
to make key observations about the F-Factors for V2G 
technology.

The F‑Factors as a function of the V2G charger rating
The results indicate that the F-Factors reduce or stay the 
same as the rating (kW) of the V2G charger increases; 
this rating is denoted by R in the aforementioned for-
mulation. This can be witnessed by observing the values 
of the F-Factors from left to right across any row of the 
above tables.

This can be explained by the definition of the F-Factor 
metric as the ratio of the achieved peak demand reduc-
tion divided by the power capability as shown in Eq. (1) 
above. For example, in the first row of Table  1, the 

Table 2  F-Factors for different values of the duration µ of the battery of an EV (between 1 and 6 h), rating P̃ of a V2G charger, and the 
efficiency of charging the battery of an EV (80–100%), corresponding to profile 2, and for 1-h duration of its peak

µ P̃ = 7.4 kW P̃ = 15 kW P̃ = 30 kW P̃ = 43 kW P̃ = 70 kW

Efficiency Efficiency Efficiency Efficiency Efficiency

100% 90% 80% 100% 90% 80% 100% 90% 80% 100% 90% 80% 100% 90% 80%

1h 35.84 35.84 35.84 25.54 25.39 25.22 15.92 15.92 15.92 12.85 12.83 12.82 9.89 9.87 9.85

2h 51.59 51.27 50.93 31.83 31.83 31.83 21.39 21.39 21.39 17.45 17.44 17.43 12.98 12.44 11.85

3h 58.00 57.88 57.76 37.53 37.49 37.46 25.48 25.47 25.47 20.98 20.46 19.51 12.07 11.35 10.52

4h 64.19 64.19 64.18 42.77 42.77 42.77 29.02 29.02 28.23 20.53 19.63 18.65 10.46 9.59 8.57

5h 70.39 70.26 70.13 47.41 47.34 47.28 30.01 28.74 27.36 19.46 18.27 16.91 8.75 7.73 6.51

6h 75.54 75.64 75.49 50.98 50.95 50.93 29.22 27.92 26.36 17.87 16.56 14.99 7.03 5.85 4.42

Table 3  F-Factors for different values of the duration µ of the battery of an EV (between 1 and 6 h), rating P̃ of a V2G charger, and the 
efficiency of charging the battery of an EV (80–100%), corresponding to profile 1, and for 6-h duration of its peak.

µ P̃ = 7.4 kW P̃ = 15 kW P̃ = 30 kW P̃ = 43 kW P̃ = 70 kW

Efficiency Efficiency Efficiency Efficiency Efficiency

100% 90% 80% 100% 90% 80% 100% 90% 80% 100% 90% 80% 100% 90% 80%

1h 13.49 13.49 13.49 13.49 13.49 13.49 12.44 12.37 12.29 11.70 11.69 11.69 11.03 11.03 11.03

2h 26.97 26.97 26.97 24.88 24.74 24.60 22.42 22.42 22.42 21.68 21.68 21.28 17.13 17.03 16.93

3h 39.91 39.47 39.03 34.86 34.86 34.86 32.25 31.74 31.17 26.71 26.50 26.28 21.77 21.71 21.64

4h 49.89 49.60 49.30 44.84 44.84 44.84 36.90 36.54 36.16 31.34 31.26 31.17 25.83 25.81 25.78

5h 59.87 59.73 59.58 54.82 54.82 54.82 41.52 41.34 41.15 35.93 35.83 35.72 29.89 29.89 29.83

6h 69.85 69.85 69.74 64.51 63.46 63.46 46.16 46.06 45.97 39.98 39.92 39.86 33.26 33.22 33.17
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rating of the V2G charger is 7.4  kW, and the efficiency 
is equal to 100%. In this case, the optimal peak reduc-
tion is 246.1  kW; this is the numerator of the F-Fac-
tor ratio. Whereas the V2G power capability is found 
by multiplying the rating of the V2G charger, which 
is 7.4  kW, with the number of chargers in the system, 
which is 50, assuming they are equal to the number of 
vehicles. Hence, the corresponding F-Factor stands at 
246.1  kW/370  kW = 66.51%. On the other hand, when 
the rating of the V2G charger increases from 7.4 kW to 
15 kW, the peak reduction becomes 334.4 kW, i.e., exhib-
its an increase equal to (334.4—246.1)/246.1 = 35.88%. 
In this case, the V2G power capability becomes equal to 
the product of 50 * 15  kW = 750  kW, i.e., it exhibits an 
increase of (750–370)/370 = 102.8%. That is, the increase 
in the numerator and denominator are 35.88% and 
102.8%, respectively. Since the denominator increases 
more than the numerator, the F-Factor reduces; in this 
case, it is equal to 334.4 kW/750 = 44.59%, as it can also 
be seen in Table 1 (the fourth white cell from the left).

In conclusion, as the rating of the V2G charger 
increases, the increase in the optimal peak reduction is 
less than the increase in the V2G power capability. Hence, 
when the rating of the V2G charger increases, the opti-
mal peak reduction also increases. However, the F-Factor 
reduces since the V2G power capability increases.

The F‑Factor of V2G as a function of the duration of the EV 
battery
A further observation that can be made is that the F-Fac-
tors increase or stay the same as the duration µ (hours) 
of the battery of an electric vehicle increases. This can be 
seen by observing any of the Tables 1, 2, 3 above where 
the values of the F-Factors along any column either 
increase or stay the same as the duration increases.

This happens because the increase in duration µ leads 
to an increase in the battery capacity of the EV, thereby 
increasing the potential of the EV fleet to reduce the 
peak demand. Since the rating of the V2G charger stays 
the same, the reduction in peak demand will cause the 
F-Factor to increase. The F-Factors are also possible to 
stop when the EV battery has sufficient capacity after 
which additional capacity does not reduce the peak 
demand. For example, see the first column in Table  1, 
where the increase in storage duration does not cause 
the F-Factor to increase beyond the value of 83.53%, 
because neither the peak demand reduction changes 
nor the V2G power capability.

The F‑Factor of V2G as a function of the level of peakiness 
of the load profile
As mentioned, profile 1 is peaky, while profile 2 is flat. 
This essentially means that there are more pronounced 
peaks in Profile 1 than in Profile 2. By comparing the 
values in Table 1, which corresponds to the peaky pro-
file 1, with those in Table 2, which corresponds to flat 
profile 2, it can be seen that the F-Factors of the former 
are higher than the ones of the latter. Figure  3 below 
illustrates these results.

This is caused by the shape of the load profiles and 
mainly the shape of the peaks. In a peaky profile, there 
are narrower peaks of higher magnitude, meaning 
that the peak can be reduced even with a small output 
from the EV battery units when discharging via V2G, 
thereby providing a significant security contribution. 
On the other hand, a flatter profile that is character-
ized by a long period of high values for load and a small 
peak requires EV batteries with a significant amount 
of energy capacity to make a significant security con-
tribution. Such contribution largely depends on the 
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Fig. 3  The F-Factors (vertical axis) as a function of storage duration (1–6 h), charger rating (7.4, 15, 43, and 70 kW) and the peakiness of the load 
profile (peaky profile shown in blue)
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difference in the height of the peak demand with the 
subsequent largest peaks; if a load profile has a peak 
that is much higher than the second-highest peak, then 
reducing the highest peak will provide considerable 
security contribution leading to a high value for the 
F-Factor.

The F‑Factor of V2G as a function of the duration 
of the peak demand
The F-Factor values can change as a function of the 
duration of the peak. Specifically, both Tables 1, 3 cor-
respond to profile 1, but in the case of Table  1, this 
profile has a peak demand of 1-h duration, while in the 
case of Table 3, the duration of profile 1 is 6 h; Fig. 4 
below illustrates the load profile 1 for the two values 
of peak demand duration, where in blue color is this 
profile for 1-h peak duration.

The results indicate that the peak demand duration 
has an impact on the F-Factor values.

By observing Tables  1, 3, it can be seen that the 
F-Factor values for 1-h peak duration are higher than 

those for a 6-h peak duration. This can also be seen in 
Fig. 5 below.

This means that the security contribution drops as 
the duration of the peak demand increases, which is 
expected given that peaks that last longer are more 
challenging to reduce than shorter ones, with the same 
storage capacity.

Overview
Our analysis of the F-Factor methodology for quantifying 
the security contribution of V2G technology has revealed 
several key insights:

1. 	V2G charger rating: As the rating of V2G chargers 
increases, the F-Factor tends to decrease or remain 
constant. This is due to the F-Factor’s definition as 
the ratio of peak demand reduction to V2G power 
capability. While higher-rated chargers can achieve 
greater peak reductions, the increase in power capa-
bility outpaces this reduction, leading to lower F-Fac-
tor values.

Fig. 4  Load profile 1, illustrated for 1-h and 6-h peak demand durations. The difference affects the fourth-day profile since this is where the peak is
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2. 	EV battery duration: Longer battery durations gener-
ally result in higher F-Factor values. This is because 
increased battery capacity allows for greater potential 
in peak demand reduction without changing the V2G 
power capability. However, there is a saturation point 
beyond which additional capacity does not further 
reduce peak demand.

3. 	Load profile peakiness: Peakier load profiles tend to 
yield higher F-Factor values compared to flatter pro-
files. This is because V2G technology can more effec-
tively reduce pronounced peaks, even with relatively 
small energy contributions from EV batteries.

4. 	Peak demand duration: Longer peak demand dura-
tions result in lower F-Factor values. This reflects the 
challenge of sustaining peak reduction over extended 
periods with limited storage capacity.

These findings collectively underscore the complex 
interplay between V2G system parameters and grid char-
acteristics in determining the security contribution of 
V2G technology. The F-Factor methodology proves to be 
a valuable tool for quantifying this contribution, offering 
insights that can inform grid planning and V2G imple-
mentation strategies.

However, it is important to note some limitations of 
our study. We did not account for factors such as sea-
sonal variations or unexpected demand spikes. Future 
research could explore these aspects to provide a more 
comprehensive understanding of V2G’s security contri-
bution under diverse real-world conditions.

Our results have significant implications for various 
stakeholders:

•	 For grid operators, they highlight the potential of 
V2G in enhancing grid security, particularly in areas 
with peaky demand profiles.

•	 For policymakers, they provide a quantitative basis 
for incorporating V2G into grid security standards 
and incentive structures.

•	 For V2G technology developers, they suggest focus-
ing on optimizing battery capacity and charging rates 
to maximize security contribution.

Looking ahead, further research could explore the inte-
gration of V2G with other flexible technologies, such as 
stationary storage or demand response, to provide a more 
holistic view of smart grid security enhancement strate-
gies. In addition, investigating the economic aspects of 
V2G deployment in relation to its security contribution 
could offer valuable insights for investment decisions.

In conclusion, the F-Factor methodology provides a 
robust framework for assessing V2G’s contribution to 

grid security. By quantifying this contribution under vari-
ous scenarios, we have demonstrated V2G’s potential as 
a valuable tool in the transition toward more secure and 
flexible electricity grids.

Conclusion and future work
This paper presents the F-Factor methodology used for 
the evaluation of the security contribution of V2G tech-
nology. Specifically, the F-Factor metric is defined as 
the ratio of the maximum (optimal) reduction in peak 
demand divided by the capability of the V2G technol-
ogy. A mathematical optimization model is presented for 
obtaining the maximum peak reduction, thereby allow-
ing for the estimation of the numerator of the F-Factor. 
The value of the F-Factor is shown to be dependent on 
the power rating of the V2G chargers, the duration of the 
battery of the EV, the level of peakiness of the load profile 
(i.e., the difference between its maximum and minimum 
values), and the duration of the peak electricity demand.

The key findings include:

1.	 V2G charger rating: The F-Factor tends to decrease 
or remain constant as the rating of V2G chargers 
increases. This is due to the definition of the F-Factor 
as the ratio of peak demand reduction to V2G power 
capability. While higher-rated chargers can achieve 
greater peak reductions, the increase in power capa-
bility outpaces this reduction, leading to lower F-Fac-
tor values.

2.	 EV battery duration: Longer battery durations gen-
erally result in higher F-Factor values. This is because 
increased battery capacity allows for greater potential 
in peak demand reduction without changing the V2G 
power capability. However, there is a saturation point 
beyond which additional capacity does not further 
reduce peak demand.

3.	 Load profile peakiness:  Peakier load profiles tend 
to yield higher F-Factor values compared to flatter 
profiles. V2G technology can more effectively reduce 
pronounced peaks even with relatively small energy 
contributions from EV batteries.

4.	 Peak demand duration: Longer peak demand dura-
tions result in lower F-Factor values. This reflects the 
challenge of sustaining peak reduction over extended 
periods with limited storage capacity.

The present paper can have implications for a range of 
stakeholders, as follows.

•	 Grid operators:  The findings highlight the potential 
of V2G in enhancing grid security, particularly in 
areas with peaky demand profiles.
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•	 Policymakers:  The research provides a quantitative 
basis for incorporating V2G into grid security stand-
ards and incentive structures.

•	 V2G technology developers:  The study suggests 
focusing on optimizing battery capacity and charging 
rates to maximize the security contribution.

Future work may include the application of Machine 
Learning concepts (Giannelos, 2024; Giannelos et  al., 
2023c), as well as robust optimization approaches in the 
study of F-Factors (Chen et  al., 2014; Inuiguchi et  al., 
1999), (Giannelos et al., 2024b). In addition, the applica-
tion of heuristic approaches, such as Backwards Induc-
tion (Giannelos et  al., 2022) and incremental planning 
analysis (Giannelos et  al., 2024a), is of interest to the 
authors to observe how a different methodology may 
affect the resulting F-Factors. The F-Factor can also be 
derived for V2B technology so that a comparison can be 
made with the F-Factors for V2G.
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