Abdalla, I., Zhang, L., & Corda, J. (2011). “Voltage-Hold Perturbation & Observation Maximum Power Point Tracking Algorithm (VH-P&O MPPT) for Improved Tracking over the Transient Atmospheric Changes,” presented at Power Electronics and Applications (EPE 2011) of the 2011-14th European Conference, (pp.1–10).
Abdulmajeed, Q. M., Kazem, H. A., Mazin, H., Abd Malek, M. F., Maizana, D., Alwaeli, A. H. A., Albadi, M. H., Sopian, K., & Said Al Busaidi, A. (2013). “Photovoltaic maximum tracking power point system: review and research challenges,” International Journal of Advanced Trends in Computer Science and Engineering (IJATCSE), Vol. 2, No. 5. (pp.16–21).
Ali, A., Saied, M., Mostafa, M., & Moneim, T. (2012). A survey of maximum PPT techniques of PV Systems. Energytech, 2012 IEEE.
Amrouche, B., Belhamel, M., & Guessoum, A. (2007). ”Artificial intelligence based P&O MPPT method for photovoltaic systems,” Revue des Energies Renouvelables ICRESD, Vol. 7, (pp. 11–16).
Azab, M. (2008). A new maximum power point tracking for photovoltaic systems. World Academy of Science, Engineering and Technology,
44, 571–574.
Google Scholar
Brito, M., Galotto, L., Sampaio, L., Melo, G., & Canesin, C. (2013). Evaluation of the Main MPPT Techniques for Photovoltaic Applications. IEEE Transactions on Industrial Electronics,
60(3), 1156–1167.
Article
Google Scholar
Busa, V., Narsingoju, K. K., & Kumar, G. V. (2012). Simulation analysis of maximum power control of photo voltaic power system. International Journal on Advanced Electrical and Electronics Engineering (IJAEEE),
1(1), 9–14.
Google Scholar
Chen, C. J. (2011). Physics of solar energy. New Jersey: Wiley.
Book
Google Scholar
Coelho, R., Concer, F., & Martins, D. (2010). ”A MPPT Approach Based on Temperature Measurements Applied in PV Systems,” IEEE/IAS International Conference on Industry Applications, (pp. 1–6).
Esram, T., & Chapman, P. (2007). Comparison of photovoltaic array maximum power point tracking techniques. IEEE Transactions on Energy Conversion,
22(2), 439–449.
Article
Google Scholar
Faranda, R., & Leva, S. (2008a). Energy comparison of MPPT techniques for PV systems. Wseas Transaction on Power Systems,
3, 446–455.
Google Scholar
Faranda, R., & Leva, S. (2008b). Energy comparison of MPPT techniques for PV systems. Wseas Transaction on Power Systems,
3, 446–455.
Google Scholar
Ghazanfari, J., & Farsangi, M. (2013). Maximum power point tracking using sliding mode control for photovoltaic array. Iranian Journal of Electrical & Electronic Engineering,
9(3), 189–196.
Google Scholar
Go, S., Ahn, S., Choi, J., Jung, W., Yun Yun, S., & Song, II. “Simulation and Analysis of Existing MPPT Control Methods in a PV Generation System.” Journal of International Council on Electrical Engineering, Vol. 1, No. 4, pp. 446-451, 2011.
Hohm, D. P., & Ropp, M. E. (2003). ”Comparative Study of Maximum Power Point Tracking Algorithms,” Progress in Photovoltaic: Research and Application, (pp. 47–62).
Hu, J., Zhang, J., & Wu, H. (2009). “Novel MPPT control algorithm based on numerical calculation for PV generation systems,” presented at Power Electronics and Motion Control Conference (pp. 2103–2107). China: Baoding.
Google Scholar
Israel, J. (2015). “Summary of maximum power point tracking methods for photovoltaic cells,” electronic matter, retrieved on May 2015.
Jain, S., & Agarwa, V. (2007). Comparison of the performance of maximum power point tracking schemes applied to single-stage grid-connected photovoltaic systems. The Institution of Engineering and Technology Power Appl.,
1(5), 753–762.
Google Scholar
Ji, Y. H., Jung, D. Y., Won, C. Y., Lee, B. K., & Kim, J. W. (2009). Maximum power point tracking method for PV array under partially shaded condition. Energy Conversion Congress and Exposition, 2009. ECCE 2009. IEEE. (pp. 307–312).
Jiang, J., Huang, T., Hsiao, Y., & Chen, Ch. (2005). Maximum power tracking for photovoltaic power systems. Tamkang Journal of Science and Engineering,
8(2), 147–153.
Google Scholar
Jusoh, A., Sutikno, T., Guan, T. K., & Mekhilef, S. (2014). A Review on favourable maximum power point tracking systems in solar energy application. Telkomnika,
12(1), 6–22.
Article
Google Scholar
Kamarzaman, N., & Tan, C. W. (2014). A comprehensive review of maximum power point tracking algorithms for photovoltaic systems. Renewable and Sustainable Energy Reviews,
37, 585–598.
Article
Google Scholar
Khatib, T. T. N., Mohamed, A., & Amim, N. (2010). An improved indirect maximum power point tracking method for standalone photovoltaic systems,” presented at Proceedings of the 9th WSEAS International Conference on Applications of Electrical Engineering, Selangor, Malaysia, pp. (56–62).
Kulaksiz, A., & Akkaya, R. (2012). Training data optimization for ANNs using genetic algorithms to enhance MPPT efficiency of a stand-alone PV system. Turk J Elec Eng and Comp Sci,
20(2), 241–254.
Google Scholar
Kumar, Ch., Dinesh, T., & Babu, S. (2013). Design and Modelling of PV System and Different MPPT Algorithms. International Journal of Engineering Trends and Technology (IJETT),
4, 4104–4112.
Google Scholar
Kumari, J., & Babu, Ch. (2011). Comparison of maximum power point tracking algorithms for photovoltaic system. International Journal of Advances in Engineering and Technology,
1, 133–148.
Google Scholar
Lapeña, O., Penella, M., & Gasulla, M. (2010). A New MPPT Method for Low-Power Solar Energy Harvesting. IEEE Transactions on Industrial Electronics,
57(9), 3129–3138.
Article
Google Scholar
Lee, J. (2011). Advanced electrical and electronic engineering. Berlin: Springer.
Book
Google Scholar
Lee, J. S., & Lee, K. B. (2013). Variable DC-link voltage algorithm with a wide range of maximum power point tracking for a two-string PV System. Energies,
6, 58–78.
Article
Google Scholar
Leyva, R., Olalla Martinez, C., Zazo, H., Cabal, C., Cid-Pastor, A., Queinnec, I., & Alonso, C. (2012). “MPPT Based on Sinusoidal Extremum-Seeking Control in PV Generation,”. International Journal of Photoenergy,
2012, 1–7.
Article
Google Scholar
Libo, W., Zhengming, Z., & Jianzheng, L. (2007). A single-stage three-phase grid-connected photovoltaic system with modified MPPT method and reactive power compensation. IEEE Transactions on Energy Conversion,
22(4), 881–886.
Article
Google Scholar
Liu, Y., Chen, J., & Huang, J. (2015). A review of maximum power point tracking techniques for use in partially shaded conditions. Renewable and Sustainable Energy Reviews,
41, 436–453.
Article
Google Scholar
Liu, C., Wu, B., & Cheung R. (2004). “Advanced Algorithm for MPPT Control of Photovoltaic System,” presented at Canadian Solar Buildings Conference, Montreal.
Lyden, S., & Haque, M. E. (2015). ” Maximum Power Point Tracking techniques for photovoltaic systems: A comprehensive review and comparative analysis,” Vol. 52, (pp.1504–1518).
Mandour, R., & Elamvazuthi, I. (2013). Optimization of maximum power point tracking (MPPT) of photovoltaic system using artificial intelligence (AI) algorithms.” Journal of Emerging Trends in Computing and Information Sciences, Vol. 4, No. 8.
Mastromauro, R., Liserre, M., & Aquila, A. (2012). Control issues in single-stage photovoltaic systems: MPPT, current and voltage control. IEEE Transactions on Industrial Informatics,
8(2), 241–254.
Article
Google Scholar
Morales, D. S. (2010). “Maximum power point tracking algorithms for photovoltaic applications, “A thesis presented to the faculty of electronics. Communications and Automation: Aalto University, Finland.
Google Scholar
Qiang, F., & Nan, T. (2013). A Strategy Research on MPPT Technique in Photovoltaic Power Generation System. Telkomnika,
11(12), 7627–7633.
Article
Google Scholar
Rahman, Md, Poddar, S., Mamun, M., Mahmud, S., & Yeasin, Md. (2013). Efficiency comparison between different algorithms for maximum power point tracker of a solar system. International Journal of Scientific Research and Management (IJSRM),
1, 157–167.
Google Scholar
Rahmani, R., Seyedmahmoudian, M., Mekhilef, S., & Yusof, R. (2013). Implementation of fuzzy logic maximum power point tracking controller for photovoltaic system. American Journal of Applied Sciences,
10, 209–218.
Article
Google Scholar
Rashid, M. H. (2011). Power Electronic Handbook (3rd ed.). USA: Butterworth-Heinemann.
Google Scholar
Reisi, A., Moradi, M., & Jamasb, S. (2013). Classification and comparison of maximum power point tracking techniques for photovoltaic system: A review. Renewable and Sustainable Energy Reviews,
19, 433–443.
Article
Google Scholar
Rekioua, D., & Matagne, E. (2012). Optimization of photovoltaic power systems modelization, simulation and control. London: Springer.
Book
Google Scholar
Reported issued by National Instruments. (2009). Maximum power point tracking. http://www.ni.com/white-paper/8106/en.
Rezaei, A., & Gholamian, S. A. (2013). Optimization of New Fuzzy Logic Controller by Genetic Algorithm for Maximum Power Point Tracking in Photovoltaic System. Journal of Science and Technology,
9(1), 9–16.
Google Scholar
Rodriguez, C., & Amaratunga, G. (2007). Analytic solution to the photovoltaic maximum power point problem. IEEE Transactions on Circuits and System,
54(9), 2054–2060.
Article
MathSciNet
Google Scholar
Sera, D., Kerekes, T., Teodorescu, R., & Blaabjerg, F. (2006a). Improved MPPT algorithms for rapidly changing environmental conditions presented at Power Electronics and Motion Control Conference, 2006. EPE-PEMC,
2006, 1614–1619.
Google Scholar
Sera, D., Kerekes, T., Teodorescu, R., & Blaabjerg, F. (2006b). “Improved MPPT Algorithms for Rapidly Changing Environmental Conditions,” presented at Power Electronics and Motion Control Conference, 2006. EPE-PEMC,
2006, 1614–1619.
Google Scholar
Takun, P., Kaitwanidvilai, S., & Jettanasen, C. (2011)“Maximum power point tracking using fuzzy logic control for photovoltaic systems,” presented at International Multi Conference of Engineers and Computer Scientists, Hong Kong, Vol. 2.
Tse, K. K., Ho, M. T., Chung, H. S.-H., & Hui, S. Y. (2002). “A novel maximum power point tracker for PV panels using switching frequency modulation,”. IEEE Transactions on Power Electronics,
17(6), 980–989.
Article
Google Scholar
Vladimir V. R., Scarpa, S., Buso, G., & Spiazzi. (2009). “Low-complexity MPPT technique exploiting the PV module MPP locus characterization.” IEEE Transactions on Industrial Electronics, Vol. 56, No. 5.
Walker, S., Sooriyaarachchi, N., Liyanage, N., Abeynayake, P., & Abeyratne, S. (2011). Comparative analysis of speed of convergence of MPPT techniques. presented at 6th International Conference on Industrial and Information Systems, Sri Lanka, (pp. 522–526).
Walker, S., Sooriyaarachchi, N., Liyanage, N., Abeynayake, P., & Abeyratne, S. (2011)”Comparative Analysis of Speed of Convergence of MPPT Techniques,” presented at 6th International Conference on Industrial and Information Systems, Sri Lanka, (pp. 522-526).
Xiao, W., Dunford, W., Palmer, P., & Capel, A. (2007). Application of centered differentiation and steepest descent to maximum power point tracking. IEEE Transactions on Industrial Electronics,
54(5), 2539–2549.
Article
Google Scholar
Yadav, A., Thirumaliah, S., & Haritha, G. (2012). Comparison of MPPT algorithms for DC–DC converters based PV systems. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering,
1, 18–23.
Google Scholar
Yafaoui, A., Wu, B., & Cheung, R. (2007). ” Implementation of Maximum Power Point Tracking Algorithm For Residential Photovoltaic Systems,” presented at 2nd Canadian Solar Buildings Conference, Calgary.
Yang, Y., & Yan, Z. (2013). A MPPT method using piecewise linear approximation and temperature compensation. Journal of Computational Information Systems,
9(21), 8639–8647.
Google Scholar
Zainudin, H., & Mekhilef, S. (2010). “Comparison study of maximum power point tracker techniques for PV systems,” presented at international middle east power systems conference (MEPCON’10) (pp. 750–755). Egypt: Cairo University.
Google Scholar
Zazo, H., Leyva, R., & Castillo, E. (2012). “Analysis of Newton-Like Extremum Seeking Control in Photovoltaic Panels,” presented at International Conference on Renewable Energies and Power Quality (ICREPQ‘12), Santiago de Compostela, Spain.
Zhou, L., Chen, Y., Liu, Q., & Wu, J. (2012). Maximum power point tracking (MPPT) control of a photovoltaic system based on dual carrier chaotic search. J Control Theory Appl,
10(2), 244–250.
Article
MathSciNet
Google Scholar