Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H. (2007). Greedy layer-wise training of deep networks. In B. Scholkopf, J. Platt, & T. Hoffman (Eds.), Advances in neural information processing systems 19 (NIPS’06) (pp. 153–160). Cambridge: MIT Press.
Google Scholar
Chang, C.-C., & Lin, C.-J. (2011). LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology,
2, 27:1–27:27.
Article
Google Scholar
Colak, I., Sagiroglu, S., & Yesilbudak, M. (2012). Data mining and wind power prediction: A literature review. Renewable Energy,
46, 241–247.
Article
Google Scholar
Gehrig, J., Miao, Y., Metze, F., & Waibel, A. (2013). Extracting deep bottleneck features using stacked auto-encoders. In Proceedings of IEEE international conference on acoustics, audio and speech (pp. 3371–3381). Vancouver.
IRENA. (2017). Renewable energy integration in power grids. http://www.irena.org/menu/index.aspx?mnu=Subcat&PriMenuID=36&CatID=141&SubcatID=644. Last accessed August 2017.
Jiang, P., Liu, F., & Song, Y. (2017). A hybrid forecasting model based on date-framework strategy and improved feature selection technology for short-term load forecasting. Energy 119, 694–709, ISSN 0360-5442. https://doi.org/10.1016/j.energy.2016.11.034.
Ng, A. (2016). Sparse autoencoder (pp. 1–19). http://web.stanford.edu/class/cs294a/sae/sparseAutoencoderNotes.pdf. Last accessed January 2016.
Rahman, A., & Murshed, M. (2004). Feature weighting methods for abstract features applicable to motion based video indexing. In IEEE international conference on information technology: Coding and computing (ITCC) (Vol. 1, pp. 676–680).
Rahman, A., Smith, D., Hills, J., Bishop-Hurley, G., Henry, D., & Rawnsley, R. (2016). A comparison of autoencoder and statistical features for cattle behaviour classification. In 2016 international joint conference on neural networks (IJCNN) (pp. 2954–2960). Vancouver. https://doi.org/10.1109/ijcnn.2016.7727573.
Rahman, A., & Verma, B. (2010). A novel ensemble classifier approach using weak classifier learning on overlapping clusters. In The 2010 international joint conference on neural networks (IJCNN) (pp. 1–7). Barcelona. https://doi.org/10.1109/ijcnn.2010.5596332
Rahman, A., & Verma, B. (2011). Novel layered clustering-based approach for generating ensemble of classifiers. IEEE Transactions on Neural Networks,
22(5), 781–792. https://doi.org/10.1109/TNN.2011.2118765.
Article
Google Scholar
Shin, H., Orton, M., Collins, D. J., Doran, S., & Leach, M. O. (2011). Autoencoder in time-series analysis for unsupervised tissues characterisation in a large unlabelled medical image data set. In Proceedings of IEEE international conference on machine learning and application (pp. 259–264).
Shin, H.-C., Orton, M. R., Collins, D. J., Doran, S. J., & Leach, M. O. (2014). Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data. IEEE Transactions on Pattern Analysis and Machine Intelligence,
8(35), 1930–1943.
Google Scholar
Soman, S. S., Zareipour, H., Malik, O., & Mandal, P. (2010). A review of wind power and wind speed forecasting methods with different time horizons. North American Power Symposium (NAPS),
2010, 1–8. https://doi.org/10.1109/NAPS.2010.5619586.
Google Scholar
Staffell. (2017). Wind turbine power curves. http://www.academia.edu/1489838/Wind_Turbine_Power_Curves. Last accessed August 2017.
Tasnim, S., Rahman, A., Shafiullah, G. M., Oo, A. M. T., & Stojcevski, A. (2014). A time series ensemble method to predict wind power. In 2014 IEEE symposium on computational intelligence applications in smart grid (CIASG) (pp. 1–5), Orlando, FL. https://doi.org/10.1109/ciasg.2014.7011544
Tasnim, S., Rahman, A., Oo, A. M. T., & Haque, M. E. (2017). Wind power prediction using cluster based ensemble regression. International Journal of Computational Intelligence and Applications. https://doi.org/10.1142/S1469026817500262.
Google Scholar
UFLDL Tutorial. (2016). Sparse autoencoder. http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial. Last accessed January 2016.
Verma, B., & Rahman, A. (2012). Cluster-oriented ensemble classifier: Impact of multicluster characterization on ensemble classifier learning. IEEE Transactions on Knowledge and Data Engineering,
24(4), 605–618. https://doi.org/10.1109/TKDE.2011.28.
Article
Google Scholar
Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., & Manjagol, P. A. (2010). Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criteria. Journal of Machine Learning Research,
11, 3371–3408.
MATH
Google Scholar
Wang, X., Guo, P., & Huang, X. (2011). A review of wind power forecasting models. Energy Procedia,
12, 770–778.
Article
Google Scholar
Wang, J., Song, Y., Liu, F., & Hou, R. (2016). Analysis and application of forecasting models in wind power integration: A review of multi-step-ahead wind speed forecasting models. Renewable and Sustainable Energy Reviews 60, 960–981, ISSN 1364-0321. https://doi.org/10.1016/j.rser.2016.01.114.
Zhao, J., Guo, Z.-H., Su, Z.-Y., Zhao, Z.-Y., Xiao, X., & Liu, F. (2016). An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed. Applied Energy 162, 808–826, ISSN 0306-2619. https://doi.org/10.1016/j.apenergy.2015.10.145.