Beranek, R., & Kisch, H. (2008). Tuning the optical and photoelectrochemical properties of surface-modified TiO2. Photochemical & Photobiological Sciences.,7, 40–48.
Article
Google Scholar
Cao, H., Xie, Y., Feng, Q., Wang, H., Wang, X., Xu, Z., et al. (2018). Multifunctional catalysts with high catalytic activities: Flower-like Co9S8 microballs assembled with weak crystalline pea pod-shaped nanowires. International Journal of Hydrogen Energy,43, 18832.
Article
Google Scholar
Chang, H., Wang, G., Yang, A., Tao, X., Liu, X., Shen, Y., et al. (2010). A transparent, flexible, low-temperature, and solution processible graphene composite electrode. Advanced Functional Materials,20, 2893–2902.
Article
Google Scholar
Daniel, R. D., Park, S., Christopher, W. B., & Rodney, S. R. (2010). The chemistry of graphene oxide. Chemical Society Reviews,39, 228–240.
Article
Google Scholar
Dwivedi, P., Das, S., & Dhanekar, S. (2017). Wafer-scale synthesized MoS2/Porous Silicon nanostructures for efficient and selective ethanol sensing at room temperature. ACS Applied Materials & Interfaces,9, 37662.
Article
Google Scholar
Guai, G. H., Song, Q. L., Guo, C. X., Lu, Z. S., Chen, T., Ng, C. M., et al. (2012). Graphene-Pt/ITO counter electrode to significantly reduce Pt loading and enhance charge transfer for high performance dye-sensitized solar cell. Solar Energy,86, 2041–2048.
Article
Google Scholar
Guo, Y., Sun, X., Liu, Y., Wang, W., Qiu, H., & Gao, J. (2012). One pot preparation of reduced graphene oxide (RGO) or Au (Ag) nanoparticle-RGO hybrids using chitosan as a reducing and stabilizing agent and their use in methanol electrooxidation. Carbon,50, 2513–2523.
Article
Google Scholar
Hasan, R., Hamid, S. B., Basirun, W. J., Chowdhury, Z. Z., Kandjani, A. E., & Suresh, K. B. (2015). Ga doped RGO-TiO2 composite on an ITO surface electrode for investigation of photoelectrocatalytic activity under visible light irradiation. New Journal of Chemistry,39, 369–376.
Article
Google Scholar
Hsieh, C., Lin, C., Chen, Y., Lin, J., & Teng, H. (2013). Silver nanorods attached to graphene sheets as anode materials for lithium-ion batteries. Carbon,62, 109–116.
Article
Google Scholar
Krishnamurthy, G., & Namitha, R. (2013). Synthesis of structurally novel carbon micro/nanospheres by low temperature-hydrothermal process. Journal of the Chilean Chemical Society,58, 1930–1933.
Article
Google Scholar
Lee, K., Suryanarayanan, V., & Ho, K. (2007). A study on the electron transport properties of TiO2 electrodes in dye-sensitized solar cells. Solar Energy Materials and Solar Cells,91, 1416–1420.
Article
Google Scholar
Liu, B., & Kuo, H. (2013). Graphene/Silver nanowire sandwich structures for transparent conductive films. Carbon,63, 390–396.
Article
Google Scholar
Menga, X., Shao, X., Li, H., Liu, F., Pu, X., Li, W., et al. (2013). One-step hydrothermal synthesis characterization and visible-light catalytic property of Ag-reduced graphene oxide composite. Materials Research Bulletin,481, 453–1457.
Google Scholar
Murugadoss, V., Arunachalam, S., Elayappan, V., & Angaiah, S. (2019a). Development of electrospun PAN/CoS nanocomposite membrane electrolyte for high-performance DSSC. Ionics,24, 4071–4080.
Article
Google Scholar
Murugadoss, V., Lin, J., Liu, H., Mai, X., Ding, T., Guo, Z., et al. (2017). Optimizing graphene content in NiSe/graphene nanohybrid counter electrode on boosting photovoltaic performance of dye-sensitized solar cells. Journal of Nanoscience and Nanotechnology,17, 398–404.
Article
Google Scholar
Murugadoss, V., Panneerselvam, P., Yan, C., Guo, Z., & Angaiah, S. (2019b). A simple one-step hydrothermal synthesis of cobalt-nickel selenide/graphene nanohybrid as an advanced platinum free counter electrode for dye sensitized solar cell. Electrochimica Acta,312, 157–167.
Article
Google Scholar
Muthoosamy, K., Bai, R. G., Abubakar, I. B., Sudheer, S. M., Lim, H. N., Loh, H., et al. (2015). Exceedingly biocompatible and thin-layered reduced graphene oxide nanosheets using an eco-friendly mushroom extract strategy. International Journal of Nanomedicine,10, 1505–1519.
Google Scholar
Peng, S., Fan, X., Li, S., & Zhang, J. (2013). Green synthesis and characterization of graphite oxide by orthogonal experiment. Journal of the Chilean Chemical Society,58, 2213–2217.
Article
Google Scholar
Salam, Z., Vijayakumar, E., Subramania, A., Sivasankar, N., & Mallick, S. (2015). Graphene quantum dots decorated electrospun TiO2 nanofibers as an effective photoanode for dye sensitized solar cells. Solar Energy Materials and Solar Cells,143, 250–259.
Article
Google Scholar
Saranya, K., Subramania, A., Sivasankar, N., & Mallick, S. (2016). Electrospun TiC embedded CNFs as a low cost platinum-free counter electrode for dye-sensitized solar cell. Materials Research Bulletin,75, 83–90.
Article
Google Scholar
Singh, N., Murugadoss, V., Nemala, S., Mallick, S., & Angaiah, S. (2018). Cu2ZnSnSe4 QDs sensitized electrospun porous TiO2 nanofibers as photoanode for high performance QDSC. Solar Energy,171, 571–579.
Article
Google Scholar
Singh, N., Murugadoss, V., Rajavedhanayagam, J., & Angaiah, S. (2019). A wide solar spectrum light harvesting Ag2Se quantum dot-sensitized porous TiO2 nanofibers as photoanode for high-performance QDSC. Journal of Nanoparticle Research,21, 176.
Article
Google Scholar
Tan, L., Ong, W., Chai, S., & Mohamed, A. (2013). Reduced graphene oxide-TiO2 nanocomposite as a promising visible-light-active photocatalyst for the conversion of carbon dioxide. Nanoscale Research Letters,8, 465.
Article
Google Scholar
Tang, Y., Lee, C., Xu, J., Liu, Z., Chen, Z., He, Z., et al. (2010). Incorporation of graphenes in nanostructured TiO2 films via molecular grafting for dye-sensitized solar cell application. American Chemical Society,4, 3482–3488.
Google Scholar
Tang, Y., Luo, S., Teng, Y., Liu, C., Xu, X., Zhang, X., et al. (2012). Efficient removal of herbicide 2,4-dichlorophenoxyacetic acid from water using Ag/reduced graphene oxide Co-decorated TiO2 nanotube arrays. Journal of Hazardous Materials,241–242, 323–330.
Article
Google Scholar
Tripathi, B., Yadav, P., Pandey, K., Kanade, P., Kumar, M., & Kumar, M. (2014). Investigating the role of graphene in the photovoltaic performance improvement of dye-sensitized solar cell. Materials Science and Engineering,190, 111–118.
Article
Google Scholar
Wang, Q., Li, Y., Sang, S., & Jin, S. (2015). Effect of the reactivity and porous structure of expanded graphite (EG) on microstructure and properties of Al2O3-C refractories. Journal of Alloys and Compounds,645, 388–397.
Article
Google Scholar
Wang, X., Xie, Y., Bateer, B., Pan, K., Zhou, Y., Zhang, Y., et al. (2016). Hexagonal FeS nanosheets with high-energy (001) facets: Counter electrode materials superior to platinum for dye-sensitized solar cells. Nano Research,9, 2862.
Article
Google Scholar
Yuan, W., Gua, Y., & Li, L. (2012). Green synthesis of graphene/Ag nanocomposites. Applied Surface Science,261, 753–758.
Article
Google Scholar
Zhang, D. W., Li, X. D., Li, H. B., Chen, S., Sun, Z., Yin, X. J., et al. (2011). Graphene-based counter electrode for dye-sensitized solar cells. Carbon.,49, 5382–5388.
Article
Google Scholar
Zhua, M., Li, X., Liu, W., & Cui, Y. (2014). An investigation on the photoelectrochemical properties of dye-sensitized solar cells based on graphene-TiO2 composite photoanodes. Journal of Power Sources,262, 349–355.
Article
Google Scholar